Cho ( 1 / xy ) + ( 1 / yz ) + ( 1 / xz ) = 0
CMR : A = Căn của x2 / yz ( 1 + x2 ) + Căn của y2 / xz ( 1 + y2 ) + Căn của z2 / xy( 1 + z2 ) \(\le\)3 / 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Lần sau bạn lưu ý ghi đề bài đầy đủ.
Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$
----------------------------
Ta có:
BĐT cần cm tương đương với:
$x^2+y^2+z^2-xy-yz-xz\geq 0$
$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$
$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$
(luôn đúng với mọi số thực $x,y,z$)
Do đó ta có đpcm
Dấu "=" xảy ra khi $x=y=z$
bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3