K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

** Lần sau bạn lưu ý ghi đề bài đầy đủ.

Cho $x,y,z$ là các số thực. CMR $x^2+y^2+z^2\geq xy+yz+xz$

----------------------------

Ta có:

BĐT cần cm tương đương với:

$x^2+y^2+z^2-xy-yz-xz\geq 0$

$\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz\geq 0$

$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2xz+x^2)\geq 0$

$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$

(luôn đúng với mọi số thực $x,y,z$)

Do đó ta có đpcm

Dấu "=" xảy ra khi $x=y=z$

16 tháng 4 2021

nhờ bạn làm hộ mình nốt câu nhé

 

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3