K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

(tự vẽ hình)

a) Ta có: CA⊥OA và CM⊥OM (tiếp tuyến vuông góc với bán kính)

=> 2 tam giác vuông OCA và OCM cùng nội tiếp trong mỗi nửa đường tròn đường kính OC.

Vậy 4 điểm A,C,M,O cùng thuộc đường tròn đường kính OC.

b) Ta có: AC=MC và BD=MD (2 tiếp tuyến cắt nhau tại 1 điểm)

=> AC+BD=MC+MD=DC

OC là phân giác góc AOM; OD là phân giác góc MOB (t/c 2 tiếp tuyến cắt nhau tại 1 điểm)

mà góc AOM và góc MOB là hai góc kề bù (A,O,B thẳng hàng)

=> góc COD = 900 (2 tia phân giác của 2 góc kề bù thì vuông góc)

Tam giác COD vuông tại O có OM là đường cao nên ta có:

MC.MD=OM2 mà MC=AC; MD=BD

=> AC.BD=OM2=R2

c) ΔACN∼ΔDBN (do AC//BD vì cùng vuông góc với AB)

=> \(\frac{NA}{ND}=\frac{AC}{DB}\)

mà AC=MC và DB=MD

=> \(\frac{NA}{ND}=\frac{MC}{MD}\)

=> MN//AC (t/c các đoạn thẳng tỉ lệ)

Ta có: \(\frac{MN}{AC}=\frac{ND}{AD}\) (2 tam giác DMN và DCA đồng dạng do MN//AC)

\(\frac{ND}{AD}=\frac{NB}{CB}\) (do AC//BD)

\(\frac{NB}{CB}=\frac{NH}{AC}\) (2 tam giác NHB và CAB đồng dạng do NH//CA)

=> \(\frac{MN}{AC}=\frac{NH}{AC}\) ⇔ MN=NH

Vậy N là trung điểm MH

7 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

28 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

∆ ACB nội tiếp trong đường tròn (O) có AB là đường kính nên  ∆ ABC vuông tại C

CO = OA = (1/2)AB (tính chất tam giác vuông)

AC = AO (bán kính đường tròn (A))

Suy ra: AC = AO = OC

∆ ACO đều góc AOC = 60 °

∆ ADB nội tiếp trong đường tròn đường kính AB nên  ∆ ADB vuông tại D

DO = OB = OA = (1/2)AB (tính chất tam giác vuông)

BD = BO(bán kính đường tròn (B))

Suy ra: BO = OD = BD

∆ BOD đều

15 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

30 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà AD, CO là hai đường chéo của hình thoi AODC nên AD vuông góc với OC

21 tháng 7 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O) ta có:

góc ADC = góc ABC (2 góc nội tiếp cùng chắn cung AC

10 tháng 5 2022

A B C D H E O

a/ Nối A với D ta có

\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)

=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp

b/ 

Xét tg vuông ACO có

\(\widehat{ACO}+\widehat{AOC}=90^o\)

Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)

Xét tứ giác nội tiếp AHDC có

 \(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)

\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)

Xét tam giác EOH và tg EBD có

\(\widehat{BED}\) chung

\(\widehat{AOC}=\widehat{EDB}\)

=> tg EOH đồng dạng với tg EDB (g.g.g)

\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)

 

 

 

10 tháng 5 2022

a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)

Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC

\(\Rightarrow AHDC\) là tứ giác nội tiếp

b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)

Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)

Xét \(\Delta EOH\) và \(\Delta EDB\) có:

\(\widehat{BED}\) chung

\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)

\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)