Tìm x,y,z nguyên dương thỏa mãn xyz=2(x+y+z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)
\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)
Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)
Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)
Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)
\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)
Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)
\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị
Không mất tính tổng quát giả sử : 0 < x\(\le\)y\(\le\)z.
Ta có: xyz = 2(x + y + z ) \(\le\)2 ( z + z + z ) = 6 z
Và xy = 2 ( x + y + z ) : z
=> xyz \(\le\)6z
=> xy \(\le\)6
vì x, y là số nguyên dương
=> xy \(\in\){1; 2; 3; 4; 5; 6} với x\(\le\)y
+) TH1 : xy = 1 => x = y = 1
=> z = 2 ( 2 + z ) => z = 4 + 2z => z = -4 loại
+) TH2: xy = 2 => x = 1; y = 2
=> 2 z = 2 ( 1 + 2 + z ) => 0z = 6 loại
+) TH3: xy = 3 => x = 1; y = 3
=> 3z = 2 ( 1 + 3 + z ) => z = 8 ( thỏa mãn )
+) Th4: xy = 4 => x =2 ; y = 2 hoặc x = 1; y =4
Với x =2; y = 2 => 4z =2 ( 4+ z) => z = 4 ( thỏa mãn )
Với x = 1; y = 4; => 4z = 2 ( 5 + z ) => z = 5 ( thỏa mãn)
Em làm tiếp nhé!