K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B1:Cho tam giác ABC. Vẽ AH vuông với BC(H thuộc BC). Trên nửa mặt phẳng bờ AH chứa điểm B dựng AD vuông với AB sao cho AD=AB. Trên nửa mặt bờ còn lại dựng AE vuông với AC sao cho AE=AC. Nối D và E, AH cắt DE tại M. DK,EL lần lượt vuông góc với HM tại K và L.Chứng minh :                                                                                                a)HA=DK,AH=EL                                     b)M là trung điểm của...
Đọc tiếp

B1:Cho tam giác ABC. Vẽ AH vuông với BC(H thuộc BC). Trên nửa mặt phẳng bờ AH chứa điểm B dựng AD vuông với AB sao cho AD=AB. Trên nửa mặt bờ còn lại dựng AE vuông với AC sao cho AE=AC. Nối D và E, AH cắt DE tại M. DK,EL lần lượt vuông góc với HM tại K và L.Chứng minh :                                                                                                a)HA=DK,AH=EL                                     b)M là trung điểm của DE

B2: Cho tam giác ABC vuông tại A (AB<AC). Vẽ AH vuông góc với BC(H thuộc BC),D là điểm trên cạnh AC sao cho AD=AB. Vẽ DE vuông với BC (E thuộc BC). DK vuông với AH tại K .Chứng minh:                                                                                                                   a)AH=DK             b)Tam giác AHE vuông cân

2
4 tháng 2 2021

undefinedundefined

4 tháng 2 2021

undefinedundefined

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

11 tháng 12 2020

Bạn tham khảo tạm.

Gọi M là trung điểm BC. Trên tia đối tia MA lấy điểm F sao cho M là trung điểm AF. AM cắt EF tại K

Dễ dàng ∆ABM = ∆FCM (c.g.c)

=> ^ABM = ^FCM (2 góc t.ứ)và AB = FC

Mà 2 góc này ở vị trí slt.

=> AB // FC.

=>^BAC + ^ACF = 180° (tcp).

Lại có:

^EAC = ^DAB = 90°

=> ^EAC + ^DAB = 180°

=> ^EAB + ^BAC + ^BAC + CAD = 180°

=> ^BAC + ^EAD = 180°

Do đó ^EAD = ^ACF.

Xét ∆ACF và ∆EAD có:

AC = AE (GT)

^ACF = ^EAD 

^CF = AD (=AB)

=>∆ACF = ∆EAD (c.g.c)

=> ^CAK = ^AED (2 góc t/ứ)

=> ^CAM+ ^EAM = ^AED + ^EAM

=> ^AED + ^EAM = ^CAE=90°

=> ^AKE = 90°

=> AM vuông góc vs DE

Mà AH vuông góc DE.

=> Đpcm