HELP ME!!! Mai nộp ròi ai đúng và giảng sao cho thuyết phục tui tick nha tk 😘😘😘
Cho a+b=4.
Tìm giá trị nhỏ nhất a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?
Ta có \(a^2+c^2\ge0\) (gt) mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))
Với \(a,b,c \ne0\), \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)
=> \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)
=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\) mà \(\frac{a}{c}=\frac{c}{b}\)
=> \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)
Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).
Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).
Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được
\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)
do đó \(a-b\le1\).
Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)
\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\).
Vậy \(maxP=1010.1009\).
a)(x - 1) x + 2 = (x - 1)x + 4
=> (x - 1) x + 4 - (x - 1)x + 2 = 0
=> (x - 1)x + 2 . [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0^{x+2}\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-1=0\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 0
=> x = 1
Nếu x - 1 = - 1
=> x = 0
Nếu x - 1 = 1
=> x = 2
Vậy \(x\in\left\{0;1;2\right\}\)
b) \(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\)
\(\Rightarrow1,78^{2x-2}:1,78^x-1,78^x:1,78^x=0\)
\(\Rightarrow1,78^{x-2}-1=0\)
\(\Rightarrow1,78^{x-2}=1\)
\(\Rightarrow1,78^{x-2}=1,78^0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Vậy x = 2
banana đỏ là chuối đỏ.
chuối đỏ là chó đuổi.
chó đuổi thì bà chạy về,chỉ thek thoy.
chúc hok tốt!!
Bài 3:
\(\widehat{A_1}=110^0;\widehat{A_2}=70^0;\widehat{A_3}=70^0\)
\(\widehat{B_3}=55^0;\widehat{B_4}=125^0;\widehat{B_1}=125^0\)