K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Nếu m  \(⋮\) 6 và n  \(⋮\)  2 thì m + n chia hết cho: 

A. 6

B. 4

C. 3

D. 2

16 tháng 10 2021

b)4

hok tốt

30 tháng 3 2021

a) D.4

b) D.2

30 tháng 3 2021

a) D

b) D 

21 tháng 12 2021

C

21 tháng 12 2021

C

26 tháng 11 2021

Nếu m chia hết cho 6 và n chia hết cho 2 thì (m+n) chia hết .cho 2

26 tháng 11 2021

chia hết cho 2 ; 4 ; 6.

21 tháng 7 2018

 **** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m ) 
Tt: n^2 chia hết cho 3 

=> m^2 + n^2 chia hết cho 3 

**** định lí đảo 
m^2 + n^2 chia hết cho 3 

Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a > 


=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3 

Xét các trườg hợp: 

m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại 
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại 

=> m^2 và n^2 cùng chia hết cho 3 

hay m và n cùng chia hết cho 3

ko bt đúng ko nữa hehe 

21 tháng 7 2018

Chứng minh m^2+n^2 chia hết 3 khi m,n chia hết 3

Ta có: m^2+n^2= m^2-n^2 + 2n^2

=(m-n)(m+n) + 2n^2

Ta có: m,n chia hết cho 3 nên (m-n)(m+n) chia hết cho 3

Và: n chia hết cho 3 nên 2n^2 chia hết cho 3

Từ 2 điều trên suy ra: (m-n)(M+n) + 2n^2 chia hết 3

Vậy m,n chia hết cho 3 thì m^2+n^2 chia hết cho 3

Đúng thì t.i.c.k đúng đi bn

25 tháng 12 2022

D.2 và B.4

25 tháng 12 2022

b và d

 

5 tháng 9 2016

Do m2; n2 là số chính phương nên m2; n2 chia 3 chỉ có thể dư 0 hoặc 1

+ Nếu m2; n2 chia 3 cùng dư 1 thì m2 + n2 chia 3 dư 2 (trái với đề bài)

+ Nếu trong 2 số m2; n2 có 1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2 + n2 chia 3 dư 1 (trái với đề bài)

=> m2; n2 cùng chia hết cho 3

Mà 3 là số nguyên tố => m chia hết cho 3; n chia hết cho 3 (đpcm)

Do m2;n2 là số chính phương nên m2;n2 chia hết cho 3 chỉ có thể dư 0 hoặc 1.

+ Nếu m2;n2 chia 3 cùng dư 1 thì m2+n2 chia 3 dư 2 (trái với đề bài có - vô lí)

+ Nếu trong 2 xố m2; n2 có  1 số chia hết cho 3; 1 số chia 3 dư 1 thì m2+n2 chia 3 dư 1 (trái đề bài- vô lí)

=> m2;n2 cùng chia hết cho 3

Mà 3 là số nguyên tố=> m chia hết cho 3; n chia hết cho 3  (điều phải chứng minh)