tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
b/
n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2
+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3 với mọi n
=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n
c/
n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
=> n(2n+1)(7n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3
Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
=> n(2n+1)(7n+1) chia hết cho 3 với mọi n
=> n(2n1)(7n+1) chia hết cho 6 với mọi n
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Với n là số nguyên
+ Ta thấy: \(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(n.\left(n+1\right)⋮2\)
+ Ta thấy: \(n,n+1\) và \(n+2\) là 3 số nguyên liên tiếp
\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3
Mà \(\left(2;3\right)=1\)
\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)
hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)
+ Ta thấy:\(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)
vì 1 trong 2 thừa số n và 7n+1 là số chẵn]
=>n.(2n+1)(7n+1) \(⋮\)2
với n có dạng 3k thì n\(⋮\)3
với n có dạng 3k1 thì2n+1\(⋮\)3
với n cá dạng 3k+2 thì 7n+1\(⋮\)3
vậy n\(⋮\)3 với mọi n