\(\frac{^{^{x^{30}+x^{28}+x^{26}+.......+x^6+x^4+x^2+1}}}{x^{28}+x^{24}+x^{20}+......+x^8+x^4+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)
\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=x^2+1\)
\(B=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^{30}+x^{28}+x^{26}+...+x^2+1}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^{30}+x^{26}+x^{22}+...+x^6+x^2\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^2\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
Xét \(x\ne1\)
Đặt \(y=x^4\).\(M=x^{28}+x^{24}+...+x^4+1\)
\(M=y^7+y^6+...+y^2+y+1\)\(\Rightarrow Ay=y^8+y^7+...+y^2+y\)
\(\Rightarrow M\left(y-1\right)=y^8-1\Rightarrow M=\frac{y^8-1}{y-1}=\frac{x^{32}-1}{x^4-1}\)
Tương tự \(N=x^{30}+x^{28}+...+x^2+1=\frac{\left(x^2\right)^{16}-1}{x-1}=\frac{x^{32}-1}{x-1}\)
\(A=\frac{M}{N}=\frac{\frac{x^{32}-1}{x^4-1}}{\frac{x^{32}-1}{x^2-1}}=\frac{x^2-1}{x^4-1}=\frac{1}{x^2+1}\)
Thay số vô tính ra A.
Tích trên có tận cùng là 7 c/s 0. Ai thấy mình đúng thì chọn nhé!