Nếu x-y-z=0 và x+2y-10z=0, z≠0z≠0 thì giá trị của B=\(\frac{2x^2+4xy}{y^2+z^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không biết! Xin lỗi nha! Nhớ tk mình! ~ Chúc bạn học giỏi ~ tth~ xin hết!
x-y-z=0 =>x-y=z => 2x - 2y =2z (1)
x+2y-10z=0 => x+2y =10z (2)
Cộng 2 vế (1) và (2) : =>3x=12z => x=4z
Thay x=4z vào x-y-z=0 ta đc:
4z-y-z=0 => 3z-y=0 => y=3z
Thay x=4z;y=3z vào B ta tính đc B=8
, \(B=\frac{2x^2+4xy}{y^2+z^2}=\frac{2x\left(x+2y\right)}{y^2+z^2}\)
\(\hept{\begin{cases}x-y-z=0\\x+2y-10z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-y=z\\x+2y=10z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4z\\y=3z\end{cases}}\)
Thay vào B, ta được: \(B=\frac{2.\left(4z\right)^2+4.4z.3z}{\left(3z\right)^2+z^2}=\frac{2.4^2+3.4^2}{3^2+1}=8\)
=>
4x2 + 2y2 + 2z2 - 4xy + 2yz - 4xz - 6y - 10z + 34 = 0
<=> [ ( 4x2 - 4xy + y2 ) - 4xz + 2yz + z2 ] + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
\(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào S ta được :
S = ( x - 4 )2020 + ( y - 3 )2020 + ( z - 5 )2020
= ( 4 - 4 )2020 + ( 3 - 3 )2020 + ( 5 - 5 )2020
= 0 + 0 + 0
= 0