Cho x và y là hai đại lượng tỉ lệ thuận. Gọi x1, x2 là hai giá trị của x. Gọi y1, y2 lag 2 giá trị tương ứng của y. Biết x1=6, x2=12 và y2-y1=4. Tính y1 và y2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x và y tỉ lệ thuận
nên y1/x1=y2/x2
=>y1/1=y2/-3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{y1}{1}=\dfrac{y2}{-3}=\dfrac{y1-y2}{1-\left(-3\right)}=\dfrac{50}{4}=\dfrac{25}{2}\)
=>y1=25/2; y2=-75/2
b: k=y1/x1=25/2:6=25/12
=>y=25/12x
Giả sử y và x tỉ lệ thuận theo tỉ hệ số tỉ lệ k; (k ≠ 0)
Khi đó ta có: y1 = k.x1 ; y2 = k.x2
Do đó y1 + y2 = kx1 + kx2 = k(x1 + x2)
Hay 10 = k.2 ⇒ k = 5.
Do đó y = 5x.
* Với x1 = 3 thì y1 = 5.3 =15
Vì x1 + x2 = 2 nên x2 = 2 – x1= 2 - 3 = -1
Vì y1 + y2 = 10 nên y2 = 10 – y1 = 10 -15 = - 5
* Từ đó ta có bảng sau:
x1 = 3 | y1 = 15 |
x2 = -1 | y2 = -5 |
x1 + x2=2 | y1 + y2 = 10 |
Đoạn từ sau chữ "Biết" thiếu dấu liên kết giữa $x_1,y_1,x_2,y_2$. Bạn cần viết lại đề rõ hơn.
a, Ta có: 2 . x1 = 5 . y1
\(\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\)\(\Rightarrow\frac{2x_1}{10}=\frac{3y_1}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x_1}{10}=\frac{3y_1}{6}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x_1}{5}=3\\\frac{y_1}{2}=3\end{cases}}\Rightarrow\hept{\begin{cases}x_1=15\\y_1=6\end{cases}}\)
b, Vì x và y là 2 đại lượng tỉ lệ nghịch
=> x1 . y1 = a
=> 15 . 6 = a
=> 90 = a
=> x1 = 90 : y1 và x2 = 90 : y2
Ta có: x1 = 2 . x2
\(\Rightarrow\frac{90}{y_1}=2.\frac{90}{y_2}\)\(\Rightarrow\frac{90}{y_1}=\frac{180}{10}\)\(\Rightarrow y_1=\frac{90.10}{180}=5\)
P/s: trình bày khá ngu :<
`x` tỉ lệ thuận với `y => x/y=(x_1)/(y_1)=(x_2)/(y_2)`
`<=> x_1 y_2=x_2 y_1 <=> (y_1)/(y_2) = (x_1)/(x_2)`
Áp dụng tính chất của dãy tỉ số bằng nhau:
` (y_1)/(y_2) = (x_1)/(x_2)=(y_1-x_1)/(y_2-x_2)=(-2)/(-4-3)=2/7`
`=> y_1=-8/7`
`x_1=6/7`