Cho biểu thức \(A=\frac{\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}}{\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}}\)
a, Rút gọn biểu thức A
b, Tìm các số nguyên x để A là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ làm thử thôi nhé-.-
\(B=\left(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+2+4\sqrt{x-2}}\right):\sqrt{\frac{4}{x^2}-\frac{4}{x}+1}\left(đk:x\ge2\right)\)
\(=\left(\sqrt{x-2-2\sqrt{x-2}.2+2^2}+\sqrt{x-2+2\sqrt{x-2}.2+2^2}\right):\sqrt{\frac{4}{x^2}-\frac{4x}{x^2}+\frac{x^2}{x^2}}\)
\(=[\left(\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}+2\right)^2}\right):\sqrt{\frac{4-4x+x^2}{x^2}}\)
\(=\left(|\sqrt{x-2}-2|+|\sqrt{x-2}+2|\right):\sqrt{\frac{\left(2-x\right)^2}{x^2}}\)
\(=\left(\sqrt{x-2}-2+\sqrt{x-2}+2\right).\frac{x}{2-x}\)
\(=2\sqrt{x-2}.\frac{x}{2-x}=\frac{2x\sqrt{x-2}}{2-x}\)
Rút Gọn:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{4}{x}-1}\)
\(=\frac{2\sqrt{x-4}}{\frac{4-x}{x}}\)
\(=-\frac{2x\sqrt{x-4}}{x-4}\)
\(=\frac{-2x}{\sqrt{x-4}}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\\x\ne16\end{cases}}\)
\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
\(\Leftrightarrow B=\frac{2x+8+\sqrt{x}\left(\sqrt{x}-4\right)-8\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow B=\frac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)
b) Để B nguyên'
\(\Leftrightarrow3\sqrt{x}⋮\sqrt{x}+1\)
\(\Leftrightarrow3\left(\sqrt{x}+1\right)-3⋮\sqrt{x}+1\)
\(\Leftrightarrow3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2\right\}\)(Đã loại những giá trị âm)
\(\Leftrightarrow x\in\left\{0;4\right\}\)
Vậy để \(B\inℤ\Leftrightarrow x\in\left\{0;2\right\}\)