K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 12 2020

Ta có: \(a^3+b^3\ge\frac{1}{4}\left(a+b\right)^3\)

Thật vậy, BĐT tương đương:

\(a^3-a^2b+ab^2-b^3\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a;b dương)

Áp dụng: \(\frac{a^3}{\left(b+c\right)^3}+\frac{b^3}{\left(c+a\right)^3}+\frac{c^3}{\left(a+b\right)^3}\ge\frac{a^3}{4\left(b^3+c^3\right)}+\frac{b^3}{4\left(c^3+a^3\right)}+\frac{c^3}{4\left(a^3+b^3\right)}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

21 tháng 6 2017

Ta có:

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{4a-b-c}{8}\left(1\right)\)

Tương tự ta có: 

\(\hept{\begin{cases}\frac{b^3}{\left(b+a\right)\left(b+c\right)}\ge\frac{4b-a-c}{8}\left(2\right)\\\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{4c-a-b}{8}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế được

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+c}{4}=\frac{3}{4}\)

21 tháng 6 2017

từ dòng 1 xuống dòng 2 mình không hiểu lắm

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)

\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)

\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)

\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)

Ta cần CM \(M\geq \frac{4}{3}\)

\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)

Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=2$

19 tháng 9 2020

Bạn cho VP=3/2 có phải tốt không, chứ cái đề nó lộ liễu quá.

\(\frac{a^3}{b\left(c+a\right)}+\frac{2b}{4}+\frac{c+a}{4}\ge3\sqrt[3]{\frac{a^3}{b\left(c+a\right)}.\frac{2b}{4}.\frac{c+a}{4}}=\frac{3a}{2}\)

\(\frac{b^3}{c\left(a+b\right)}+\frac{2c}{4}+\frac{a+b}{4}\ge3\sqrt[3]{\frac{b^3}{c\left(a+b\right)}.\frac{2c}{4}.\frac{a+b}{4}}=\frac{3b}{2}\)

\(\frac{c^3}{a\left(b+c\right)}+\frac{2a}{4}+\frac{b+c}{4}\ge3\sqrt[3]{\frac{c^3}{a\left(b+c\right)}.\frac{2a}{4}.\frac{b+c}{4}}=\frac{3c}{2}\)

\(\Rightarrow VT\ge\frac{3\left(a+b+c\right)}{2}-\frac{2\left(a+b+c\right)}{4}-\frac{2\left(a+b+c\right)}{4}\)\(=\frac{1}{2}\left(a+b+c\right)\Rightarrowđpcm\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

NV
21 tháng 10 2019

Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)

\(P=\frac{x^3yz}{y+z}+\frac{xy^3z}{x+z}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

14 tháng 4 2018

đề sai ak

19 tháng 11 2018

thay 1=(abc)^2

22 tháng 1 2020

Đặt BĐT cần c/m là A

Dự đoán đẳng thức xảy ra khi a = b = c

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}.\frac{a+b}{8}.\frac{a+c}{8}}=\frac{3a}{4}\)

\(\frac{b^3}{\left(b+c\right)\left(b+a\right)}+\frac{b+c}{8}+\frac{b+a}{8}\)

\(\ge3\sqrt[3]{\frac{b^3}{\left(b+c\right)\left(b+a\right)}.\frac{b+c}{8}.\frac{b+a}{8}}=\frac{3b}{4}\)

\(\frac{c^3}{\left(c+a\right)\left(c+b\right)}+\frac{c+a}{8}+\frac{c+b}{8}\)

\(\ge3\sqrt[3]{\frac{c^3}{\left(c+a\right)\left(c+b\right)}.\frac{c+a}{8}.\frac{c+b}{8}}=\frac{3c}{4}\)

Cộng từng vế của các BĐT trên, ta được:

\(A+\frac{2\left(a+b+c\right)}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow A\ge\frac{3}{4}\)

(Dấu "="\(\Leftrightarrow a=b=c\))

16 tháng 7 2017

Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html

16 tháng 7 2017

Another way CLICK HERE