chứng minh rằng: a^7-a chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
Ta có: a+6b = a+7b-b = a-b + 7b (vì a+b chia hết cho 7 => a-b cũng chia hết cho 7 và 7b chia hết cho 7)
=> a-b+7b chia hết cho 7
=> a+6b chia hết cho 7
=> a+6b chia hết cho 7 <=> a+b chia hết cho 7
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
Rinu ko lm thì ra chỗ khác mà chơi.
\(a^7-a=a\left(a^6-1\right)=a\left(a^3-1\right)\left(a^3+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
a sẽ có 7 dạng \(7k;7k+1;7k+2;7k+3;7k+4;7k+5;7k+6\)
Dễ CM với \(a=7k;a=7k+1;a=7k+6\) thì \(a^7-a⋮7\)
Với \(a=7k+2\Rightarrow a^2+a+1=49k^2+28k+7k+7⋮7\)
Với \(a=7k+3\Rightarrow a^2-a+1=49k^2+42k+7k+7⋮7\)
Tương tự xét tiếp nha.mik mệt quá r:(
cảm ơn bạn nha coolkid