K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

ai thi ioe lớp 5 vòng 11 hộ mình ko

24 tháng 12 2020

a) Xét △MIA và △BIH có 

MI=BI( giả thiết)

góc MIA =góc BIH(2 góc đối đỉnh)

IA=IH(Vì I là trung điểm của AH)

=>  △MIA = △BIH(c-g-c)

=>góc IMA=góc IBH (2 góc tương ứng)

hay góc BMA=góc MBH mà 2 góc này là 2 góc so le trong của đường thẳng MB cắt MA và BH

=>MA//BH

bạn tự làm câu b,c nhé

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

23 tháng 2 2023

a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:

ˆDAB=ˆDMB(=90o)���^=���^(=90�)

Chung BD��
ˆABD=ˆMBD���^=���^

→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)

b.Từ câu a →BA=BM,DA=DM→��=��,��=��

→B,D∈→�,�∈ trung trực AM��

→DB→�� là trung trực AM��

c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��

               CA⊥AB→CD⊥BK��⊥��→��⊥��

→D→� là trực tâm ΔBCKΔ���

→BD⊥CK→��⊥��

→BN⊥KC→��⊥��

Xét ΔBMK,ΔBACΔ���,Δ��� có:

Chung ^B�^

BM=BA��=��

ˆBMK=ˆBAC(=90o)���^=���^(=90�)

→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)

→BK=BC→��=��

→ΔKBC→Δ��� cân tại B�

d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��

Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��

Xét ΔNKP,ΔNCFΔ���,Δ��� có:

NK=NC��=��

ˆKNP=ˆCNF���^=���^

NP=NF��=��

→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)

→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��

Xét ΔFPC,ΔBPCΔ���,Δ��� có:

ˆCPF=ˆPCB���^=���^ vì NP//BC��//��

Chung NP��

ˆPCF=ˆCPB���^=���^ vì BP//CF��//��

→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)

→CF=BP→��=��

→PK=BP→��=��

→P→� là trung điểm BK��

Do E,N�,� là trung điểm BC,CK��,��

→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ���