Giúp mình với:
a) 5^5 - 5^4 + 5^3 chứng minh chia hết cho 7
b)10^9 + 10^8 + 10^7 chứng minh chia hết cho 222
Cảm ơn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
e) \(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{24}.\left(3^4-3^3-3^2\right)=3^{24}.45⋮45\left(Đpcm\right)\)
f) \(8^{10}-8^9-8^8=8^8.\left(8^2-8-1\right)=8^8.55⋮55\left(Đpcm\right)\)
g) \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=5^6.2^7.555⋮555\left(Đpcm\right)\)
a) \(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21⋮7\left(đpcm\right)\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55⋮11\left(đpcm\right)\)
c) \(10^9+10^8+10^7=10^7.\left(10^2+10+1\right)=10^7.111=2^7.5^7.111=2^6.222.5^7\)\(⋮222\left(đpcm\right)\)
a) 55 -54 + 53 =53 ( 52 - 5 +1) =53 .21 \(⋮\)7 (vì 21 \(⋮\)7)
=> 55 - 54 + 53 \(⋮\)7
b) 109 + 108 +107 = 107 (102+10+1) = 107 .111= 106 .10. 111 = 106 .5. 222\(⋮\)222 (vì 222\(⋮\)222)
=> 109 + 108 + 107 \(⋮\)222
a)5^5-5^4+5^3=5^3.(5^2-5+1)=5^3.(25-5+1)=5^3.21 \(⋮\) 7(đpcm)
b) ta có 222=2.111
mà 10 chia hết cho 2
=>10^9+10^8+10^7 chia hết cho 2 (1)
lại có ;
10^9+10^8+10^7=10^7.(10^2+10+1)=10^7.111 (2)
từ 1 và 2 suy ra 10^9+10^8+10^7 chia hết cho 222