Cho số tự nhiên có 2 chữ số , biết rằng số đó chia hết cho 7 . Chứng minh rằng hiệu các lập phương của hai chữ số đó chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bị chia cho 7 là a .
Giả sử a là 777 , thì a chia hết cho 7 ; 7 + 7 + 7 = 21 chia hết cho 7 .
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath
Số tự nhiên có 3 chữ số mà chữ số hàng chục bằng chữ số hàng đơn vị là: \(\overline{abb}\)( a khác 0, a,b,c là số tự nhiên có 1 chữ số)
\(\overline{abb}=a.100+b.10+b=a.100+b.11=98a+2a+7b+4b\)
\(=\left(98a+7b\right)+\left(2a+4b\right)=7\left(14a+7\right)+2\left(a+2b\right)\)
Theo bài ra : \(\overline{abb}\) chia hết cho 7 mà \(7\left(14a+7\right)⋮7\)
=> \(2\left(a+2b\right)⋮7\)=> \(a+2b⋮7\)=> a + b + b chia hết cho 7
Vậy tổng các chữ số \(\overline{abb}\) chia hết cho 7.