mn giúp em bài này với ạ em cảm ơn. Cho x,y là hai số thực thoa mãn x2019 -y2019 +2(x-y)=0 . Tìm GTNN
của P=x3y-2xy+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=2+\dfrac{6}{x-3}\)
\(P=3x\left(2+\dfrac{6}{x-3}\right)+2x+2+\dfrac{6}{x-3}\)
\(P=8x+2+\dfrac{18x}{x-3}+\dfrac{6}{x-3}=8x+20+\dfrac{60}{x-3}\)
\(P=8\left(x-3\right)+\dfrac{60}{x-3}+44\ge2\sqrt{\dfrac{480\left(x-3\right)}{x-3}}+44=44+8\sqrt{30}\)
\(P_{min}=44+8\sqrt{30}\) khi \(8\left(x-3\right)=\dfrac{60}{x-3}\Leftrightarrow x=\dfrac{6+\sqrt{30}}{2}\)
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
Áp dụng BĐT Cô si cho 2 số dương, ta có:
\(\left[\left(x+y\right)+\dfrac{1}{x+y}\right]\ge2\sqrt{\left(x+y\right).\dfrac{1}{x+y}}=2\)
Dấu "=" \(\Leftrightarrow x+y=\dfrac{1}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2=1\)
Lời giải:
Để pt có 2 nghiê pb thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)
\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
\(x^{2019}-y^{2019}+2\left(x-y\right)=0\)
<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}\right)+2\left(x-y\right)=0\)
<=> \(\left(x-y\right)\left(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2\right)=0\)(1)
Có: \(x^{2018}+x^{2017}y+...+xy^{2017}+y^{2018}+2>0\)mọi x, y.
(1) <=> \(x-y=0\)
<=> x = y
Thế vào P ta có:
\(P=x^4-2x^2+2=\left(x^2-1\right)^2+1\ge1\)
"=" xảy ra <=> \(y=x=\pm1\)
Vậy min P =1 khi và chỉ khi x = y =1 hoặc x = y =-1.