So sánh:
a) ( -1/16 ) * 100 và ( -1/2 ) * 500
b) -32 * 9 và -18 * 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}\right)^5\right]^{100}=\left(-\frac{1}{32}\right)^{100}\)
=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{32}\right)^{100}\)
<=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{2}\right)^{500}\)
câu b cũng tương tự nha tất cả đưa về cơ số là -2
a) Chỉ cần so sánh \(\left(\frac{1}{16}\right)^{100}\)và \(\left(\frac{1}{2}\right)^{500}\)
Cách 1 : \(\left(\frac{1}{16}\right)^{100}\)= \(\left(\frac{1}{2}\right)^{400}>\left(\frac{1}{2}\right)^{500}\)
Cách 2 : \(\left(\frac{1}{16}\right)^{100}>\left(\frac{1}{32}\right)^{100}=\left(\frac{1}{2}\right)^{500}\)
b) Trước hết ta so sánh : 329 và 1813
Ta có : 329 < 245 < 252 = 1613 < 1813
Vậy -329 > -1813 tức là ( -32)9 > ( -18)13
a) \(49^{12}\)và \(5^{40}\)
\(49^{12}=\left(49^3\right)^4=\left(\left(7^2\right)^3\right)^4=\left(7^6\right)^4\)
\(5^{40}=\left(5^{10}\right)^4\)
\(7^6=\left(7^3\right)^2>\left(5^5\right)^2\)vì \(7^2\cdot7>5^3\cdot5^2\)
\(\Rightarrow49^{12}< 5^{40}\)
\(\left(-\frac{1}{16}\right)^{100}=\left(-\left(\frac{-1}{2}\right)^4\right)^{100}\)
\(=\left(-\frac{1}{2}\right)^{400}< \left(-\frac{1}{2}\right)^{500}\)
a) Ta có:
\(\dfrac{16}{9}\)=\(\dfrac{48}{27}\) \(\dfrac{24}{13}=\dfrac{48}{26}\)
Vì 27>26
➝\(\dfrac{48}{27}>\dfrac{48}{26}hay\dfrac{16}{9}>\dfrac{24}{13}\)
So sánh:
a) 16/9 và 24/13
Ta có \(\dfrac{16}{9}=\dfrac{208}{117}\) và \(\dfrac{24}{13}=\) \(\dfrac{216}{117}\)
\(\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\Rightarrow\dfrac{24}{13}>\dfrac{16}{9}\)
b) 27/82 và 26/75
Ta có \(\dfrac{27}{82}\approx0,33\) và \(\dfrac{26}{75}\approx0,35\)
\(\Rightarrow9,35>0,33\Rightarrow\dfrac{26}{75}>\dfrac{27}{82}\)
Toán 6 ?
Ta có :
\(\left(-\frac{1}{16}\right)^{100}=\left(\frac{1}{16}\right)^{100}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\left(\frac{1}{2}\right)^{500}=\frac{1}{2^{500}}=\frac{1}{\left(2^4\right)^{125}}=\frac{1}{16^{125}}\)
Do \(\frac{1}{16^{100}}>\frac{1}{16^{125}}\left(16^{100}< 16^{125}\right)\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{.2}\right)^{500}\)
Vậy ...
a) \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}^5\right)^{100}\right]=\left(\frac{-1}{32}\right)^{100}\)
Vì \(\left(-\frac{1}{16}\right)^{100}\) > \(\left(\frac{-1}{32}\right)^{100}\) nên \(\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b) Câu này mk ko bt
Bạn thông cảm
b, Bài giải
\(\left(-32\right)^9=\left(-16\cdot2\right)^9=\left(-16\right)^9\cdot2^9\)
\(\left(-16\right)^{13}=\left(-16\right)^9\cdot\left(-16\right)^4=\left(-16\right)^9\cdot\left[\left(-2\right)^4\right]^4=\left(-16\right)^9\cdot\left(-2\right)^{16}=\left(-16\right)^9\cdot2^{16}\)
Vì \(2^9< 2^{16}\) nên \(\left(-32\right)^9>\left(-16\right)^{13}\)