Cho a/b=c/d. Chứng minh 11a+3b/11c+3b=3a-11b/3c-11d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{11a+17b}{11c-17d}=\dfrac{3a-4b}{3c-4d}\)
\(\Rightarrow...\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)\(\Leftrightarrow\frac{bk-b}{b}=\frac{dk-d}{d}\)
Xét VT \(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\left(1\right)\)
Xét VP \(\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Đặt tương tự ta xét VT:
\(\frac{11bk+3b}{11dk+3d}=\frac{b\left(11k+3\right)}{d\left(11k+3\right)}=\frac{b}{d}\left(1\right)\)
Xét VP \(\frac{3bk-11b}{3dk-11d}=\frac{b\left(3k-11\right)}{d\left(3k-11\right)}=\frac{b}{d}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Cũng đặt tương tự
Xét VT \(\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
Xét VP \(\frac{bk\cdot dk}{b\cdot d}=\frac{b\cdot d\cdot k^2}{b\cdot d}=k^2\left(2\right)\)
Từ (1) và (2) =>Đpcm
d)Đặt cũng như vậy
Xét VT \(\frac{4\left(bk\right)^4+5b^4}{4\left(dk\right)^4+5d^4}=\frac{4b^4k^4+5b^4}{4d^4k^4+5d^4}=\frac{b^4\left(4k^4+5\right)}{d^4\left(4k+5\right)}=\frac{b^4}{d^4}\left(1\right)\)
Xét VP \(\frac{\left(bk\right)^2b^2}{\left(dk\right)^2d^2}=\frac{b^2k^2b^2}{d^2k^2d^2}=\frac{k^2b^4}{k^2d^4}=\frac{b^4}{d^4}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Xét d. ( a - b ) = a . d - b . d
b. ( c - d ) = b . c - b . d
Vì \(\frac{a}{b}=\frac{c}{d}\) => a . d = b . c
hay d. ( a - b ) = b. ( c - d )
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)
Sửa chút, chỗ mẫu 11c + 3b thành 11c +3d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{c}=\frac{b}{d}=\frac{11a}{11c}=\frac{3b}{3d}=\frac{11a+3b}{11c+3d}\\\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{11b}{11d}=\frac{3a-11b}{3c-11d}\end{cases}}\)
\(\Rightarrow\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)
Vậy \(\frac{11a+3b}{11c+3d}=\frac{3a-11b}{3c-11d}\)