K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).

30 tháng 12 2021

a: Xét ΔABC có

E là trung điểm của AC

F là trung điểm của BC

Do đó: FE là đường trung bình

=>FE//DB và FE=DB

hay DEFB là hình bình hành

16 tháng 12 2022

a: Xét ΔCAB có CD/CB=CE/CA

nên DE//AB và DE=AB/2

=>DF//AB và DF=AB

=>ABDF là hình bình hành

Xét tứ giác ABDE có DE//AB

nên ABDE là hình thang

b: Xét tứ giác ADCF có

E là trug điểm chung của AC và DF
góc ADC=90 độ

Do đo: ADCF là hình chữ nhật

c: Vì ABDF là hình bình hành

nên AD cắt BF tại trung điểm của mỗi đường

=>B,I,F thẳng hàng

26 tháng 12 2021

a: Xét ΔABC có

M là trung điểm của AB

 N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC