Cho tam giác ABC. Gọi D, E lần lượt là trung điểm của AB,BC.
a, Chứng minh tứ giác ADEC là hình thang
b, Gọi F là điểm đối xứng với E qua D. Tứ giác AEBF là hình gì? Vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABC vuông tại A có:
+ D là trung điểm của AB (gt).
+ E là trung điểm của AC (gt).
=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).
Mà BC = 10 cm (gt).
=> DE = 5 cm.
Vậy DE = 5 cm.
b) Xét tam giác ABC vuông tại A có:
DE là đường trung bình (cmt)
=> DE // BC (Tính chất đường trung bình trong tam giác).
Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.
Mà DE = \(\dfrac{1}{2}\)BC (cmt).
=> BF = CF = DE = \(\dfrac{1}{2}\)BC.
Xét tứ giác BDEF có:
+ BF = DE (cmt).
+ BF // DE (do DE // BC).
=> Tứ giác BDEF là hình bình hành (dhnb).
c) Xét tam giác ABC vuông tại A:
+ D là trung điểm của AB (gt).
+ F là trung điểm của BC (gt).
=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).
=> DF // AC và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác).
Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).
Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).
=> AE = CE = DF = \(\dfrac{1}{2}\)AC.
Xét tứ giác ADEF có:
+ AE = DF (cmt).
+ AE // DF (do DF // AC).
=> Tứ giác ADEF là hình bình hành (dhnb).
Mà ^DAE = 90o (do tam giác ABC vuông tại A).
=> Tứ giác ADEF là hình chữ nhật (dhnb).
d) Gọi I là giao điểm của AF và DE.
Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).
=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)
Ta có: G là điểm đối xứng của F qua D (gt).
=> D là trung điểm của CG.
=> DF = \(\dfrac{1}{2}\)GF.
Mà DF = \(\dfrac{1}{2}\)AC (cmt).
=> GF = AC.
Xét tứ giác GACF có:
+ GF = AC (cmt).
+ GF // AC (do DF // AC).
=> Tứ giác GACF là hình bình hành (dhnb).
=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).
Mà I là trung điểm của AF (cmt)
=> I là trung điểm của GC (2).
Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.
hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).
a: Xét ΔABC có
E là trung điểm của AC
F là trung điểm của BC
Do đó: FE là đường trung bình
=>FE//DB và FE=DB
hay DEFB là hình bình hành
a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE=AB/2
=>DF//AB và DF=AB
=>ABDF là hình bình hành
Xét tứ giác ABDE có DE//AB
nên ABDE là hình thang
b: Xét tứ giác ADCF có
E là trug điểm chung của AC và DF
góc ADC=90 độ
Do đo: ADCF là hình chữ nhật
c: Vì ABDF là hình bình hành
nên AD cắt BF tại trung điểm của mỗi đường
=>B,I,F thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC