K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)

\(x+x+x+x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=1\)

\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)

\(4\times x+\frac{15}{16}=1\)

\(4\times x=1-\frac{15}{16}\)

\(4\times x=\frac{1}{16}\)

\(x=\frac{1}{16}:4\)

\(x=\frac{1}{64}\)

12 tháng 10 2019

( x+1/2) +(1/4) + ( x + 1/8 ) + ( x + 1/6 ) = 1

 x * 4 + 1/2 + 1/4 + 1/8 + 1/6                  = 1

 x * 4 + 1/2 + 1/4 + 1/8                           = 1 - 1/6

 x * 4 + 1/2 + 1/4 + 1/8                           = 5/6

 x * 4 + 1/2 + 1/4                                    = 5/6 -1/8

 x * 4 + 1/2 + 1/4                                    = 17/24

 x * 4 + 1/2                                             = 17/24 - 1/4

 x * 4 + 1/2                                             = 11/24

 x * 4                                                      = 11/24 - 1/2

 x * 4                                                      = -1/24

 x                                                           = -1/24 : 4

 x                                                           = -1/96

19 tháng 3 2022

(x+2)2 +x(x-1)<2x2+1
x2+4x+4+x2-x<2x2+1
3x+4<1
x< -1


 

17 tháng 1 2023

\(\left(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}\right)x=1\)

\(\Leftrightarrow\dfrac{1}{9}x=1\)

\(\Leftrightarrow x=1:\dfrac{1}{9}\)

\(\Leftrightarrow x=9\)

=>1/2(2/15+2/35+2/63)*x=1

=>1/2(1/3-1/5+1/5-1/7+1/7-1/9)*x=1

=>1/2*2/9*x=1

=>x*1/9=1

=>x=9

21 tháng 9 2021

a. 9x2 - 6x - 3 = 0

<=> 3(3x2 - 2x - 1) = 0

<=> 3(3x2 - 3x + x - 1) = 0

<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)

<=> 3(3x + 1)(x - 1) = 0

<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

b. (2x + 1)2 - 4(x + 2)2 = 9

<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)

<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9

<=> -3(4x + 5) = 9

<=> 4x + 5 = -3

<=> 5 + 3 = -4x

<=> -4x = 8

<=> -x = 2

<=> x = -2

21 tháng 9 2021

a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2-4=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)

NV
4 tháng 4 2021

1.

\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)

2.

\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)

11 tháng 1 2022

f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8f(x)=4x+x−1+11−x=22x+11−x−1≥(2+1)2x+1−x−1=8

f(x)min=8f(x)min=8 khi x=23x=23

2.

f(x)=1x+11−x≥4x+1−x=4f(x)=1x+11−x≥4x+1−x=4

f(x)min=4f(x)min=4 khi x=12

5 tháng 3 2022

\(x-\dfrac{1}{2}=\dfrac{4}{7}\\ x=\dfrac{4}{7}+\dfrac{1}{2}\\ x=\dfrac{15}{14}\\ \dfrac{19}{7}-x=\dfrac{27}{2}-1\\ \dfrac{19}{7}-x=\dfrac{25}{2}\\ x=\dfrac{19}{7}-\dfrac{25}{2}\\ x=-\dfrac{137}{14}\)

5 tháng 3 2022

\(x=\dfrac{4}{7}+\dfrac{1}{2}=\dfrac{8}{14}+\dfrac{7}{14}=\dfrac{15}{14}\)

a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)

\(=x-2x^2+2x^2-x+4\)

\(=4\). Đây là hàm hằng nên không có nghiệm.

b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)

\(=x^2-5x-x^2-2x+7x\)

\(=0\).  Đây là hàm hằng nên không có nghiệm.

c) \(H\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)

Vì : \(H\left(x\right)=x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Nen đa thức này vô nghiệm.