Chứng minh rằng với mọi a là số tự nhiên khác 0 thì số a(a+1)(a+2)(a+3) ko là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016
C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)
C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)
C = 4 . 21 + 44 . 21 + ... + 42014 . 21
C = 21(4 + 44 + ... + 42014) \(⋮\)21
=> C \(⋮\)21
C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016
C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 43 + 44 + 45)
C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365
C = 1365(4 + 47 + ... + 42011)
mà 1365 \(⋮\)105
=> C \(⋮\)105
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)=\left(n^2+3n\right)^2-2\left(n^2+3n\right)=\left(n^2+3n-1\right)^2-1\)
là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)
A = n n + 1 n + 2 n + 3
= n n + 3 n + 1 n + 2
= n 2 + 3n n 2 + 3n + 2
= n 2 + 3n 2 − 2 n 2 + 3n
= n 2 + 3n − 1 2 − 1 là số liền trc của 1 số chính phương nên nó ko thể là số chính phương (đpcm)
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath