Cho tam giác ABC vuông tại A, đường cao AH, kẻ HE,HD lầ lượt vuông góc AC,AB
a.Chứng minh tứ giác ADHE là hình chữ nhật
b.AD*AB=AE*AC
c.Góc ADE=Góc ACB
Mn giúp mình vs mai mk phải lộp bài r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
nen AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A
=>AB=AC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: Vì ADHE là hình chữ nhật
nên AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
mà AH vuông góc vơi BC
nên ΔABC cân tại A
=>AB=AC
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH cắt DE tại trung điểm của mỗi đường và AH=DE
=>OA=OE
b: AD*AB=AH^2
AE*AC=AH^2
Do đó: AD*AB=AE*AC
=>AD/AC=AE/AB
=>ΔADE đồng dạng với ΔACB
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
DH//AF
DH=AF(=AE)
Do đó: AFDH là hình bình hành