K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

đặt \(\sqrt{ }x^2+8x+8=k\), điều kiện k>=0

thay vào ta được \(x^2+8x+8+4\)-2\(\sqrt{x^2+8x+8}\)=3 <=>k2+4-2k=3 <=>k2-2k+1=0 <=>k=1(thỏa mãn k>=0)

=>\(\sqrt{x^2+8x+8}\)=1 <=> x2+8x+8=1 <=>x2+8x+7=0 <=> x=-1,x=-7

30 tháng 9 2019

\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)

\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2.\frac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\) ( là nghiệm ) . Và ta xét PT \(\frac{2}{\sqrt{x^2+8x+8}+1}=1\)

\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)

Vậy PT trên là : \(x=-1;x=-7\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

27 tháng 10 2017

\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)

\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2\cdot\dfrac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2\cdot\dfrac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2\cdot\dfrac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (là nghiệm) Và xét pt \(\dfrac{2}{\sqrt{x^2+8x+8}+1}=1\)

\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)

Vậy nghiệm pt là \(x=-1;x=-7\)

19 tháng 5 2018

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

NV
12 tháng 4 2022

Đặt \(\sqrt{x^2+9}=t>0\) ta được:

\(t^2+8x=\left(x+8\right)t\Leftrightarrow t^2-\left(x+8\right)t+8x=0\)

\(\Leftrightarrow t^2-tx-8t+8x=0\)

\(\Leftrightarrow t\left(t-x\right)-8\left(t-x\right)=0\)

\(\Leftrightarrow\left(t-x\right)\left(t-8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+9}=x\left(x\ge0\right)\\\sqrt{x^2+9}=8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+9=x^2\left(vn\right)\\x^2=55\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{55}\)

7 tháng 1 2016

Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)


 

19 tháng 5 2018

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần