Giải phương trình :
\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)
\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2\cdot\dfrac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2\cdot\dfrac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2\cdot\dfrac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (là nghiệm) Và xét pt \(\dfrac{2}{\sqrt{x^2+8x+8}+1}=1\)
\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
Vậy nghiệm pt là \(x=-1;x=-7\)
Đặt:
\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)
Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:
\(b-a+\sqrt[3]{a^3-b^3+8}=2\)
\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)
\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)
\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)
\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)
\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)
Đặt \(\sqrt{x^2+9}=t>0\) ta được:
\(t^2+8x=\left(x+8\right)t\Leftrightarrow t^2-\left(x+8\right)t+8x=0\)
\(\Leftrightarrow t^2-tx-8t+8x=0\)
\(\Leftrightarrow t\left(t-x\right)-8\left(t-x\right)=0\)
\(\Leftrightarrow\left(t-x\right)\left(t-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+9}=x\left(x\ge0\right)\\\sqrt{x^2+9}=8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+9=x^2\left(vn\right)\\x^2=55\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{55}\)
Có: \(\left(x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\right)^2\ge\left(x^2+12-x^2\right)\left(12-y+y\right)=12^2\)(Bunhiacopxki)
\(\Rightarrow x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}\ge12\)
Dấu "=" xảy ra <=> \(\frac{x}{\sqrt{12-y}}=\frac{\sqrt{12-x^2}}{\sqrt{y}}\)\(\Leftrightarrow\frac{x^2}{12-y}=\frac{12-x^2}{y}=\frac{x^2+12-x^2}{12-y+y}=1\)
\(\Rightarrow x^2=12-y\Rightarrow y=12-x^2\)
Có :\(x^3-8x-1=2\sqrt{12-x^2-2}=2\sqrt{10-x^2}\)
Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần
đặt \(\sqrt{ }x^2+8x+8=k\), điều kiện k>=0
thay vào ta được \(x^2+8x+8+4\)-2\(\sqrt{x^2+8x+8}\)=3 <=>k2+4-2k=3 <=>k2-2k+1=0 <=>k=1(thỏa mãn k>=0)
=>\(\sqrt{x^2+8x+8}\)=1 <=> x2+8x+8=1 <=>x2+8x+7=0 <=> x=-1,x=-7
\(x^2+8x+12-2\sqrt{x^2+8x+8}=3\)
\(\Leftrightarrow x^2+8x+7-\left(2\sqrt{x^2+8x+8}-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{x^2+8x+7}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)-2.\frac{\left(x+1\right)\left(x+7\right)}{\sqrt{x^2+8x+8}+1}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)\left(1-2.\frac{1}{\sqrt{x^2+8x+8}+1}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\) ( là nghiệm ) . Và ta xét PT \(\frac{2}{\sqrt{x^2+8x+8}+1}=1\)
\(\sqrt{x^2+8x+8}=1\Leftrightarrow x^2+8x+7=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+7\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
Vậy PT trên là : \(x=-1;x=-7\)
Chúc bạn học tốt !!!