K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

6 tháng 9 2014

Bài 1:

a) 2/19 + 2/10 + 2/22 + 17/19 + 2/11 + 4/5 + 8/11

=(2/19 +17/19) + 1/5 + 1/11 + 2/11 + 4/5 + 8/11

= 1 + (1/5 + 4/5) + (2/11 + 8/11 + 1/11)

= 1 + 1 + 1 = 3

b) 3/9 + 4/12 + 6/18 + 1/3 + 5/15 + 7/21

= 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3

= 1/3 x 6 = 2

c) 100 + (125x3-125x2-125) x (1 + 3 + 5 + 7 + ...+ 97 + 99)

= 100 + [125x(3-2-1)] x A

= 100 + (125x0) x A

= 100 + 0 x A

= 100 + 0

= 100

Bài 2:

Gọi số đó là ab

(a+b) x 6 = ab

a x 6 + b x 6= a x 10 + b

b x 5 = a x 4

suy ra a=5; b=4; ab=54

Bài 3:

Vì các số lẻ x 5 đều có tận cùng là 5 nên các tích đều có tận cùng là 5.

Mà 5x3=15 nên P có tận cùng là 5

 

 

 

 

 

 

 

 

 

 

 

31 tháng 12 2018

Bài 1:

a) 2/19 + 2/10 + 2/22 + 17/19 + 2/11 + 4/5 + 8/11

=(2/19 +17/19) + 1/5 + 1/11 + 2/11 + 4/5 + 8/11

= 1 + (1/5 + 4/5) + (2/11 + 8/11 + 1/11)

= 1 + 1 + 1 = 3

b) 3/9 + 4/12 + 6/18 + 1/3 + 5/15 + 7/21

= 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3

= 1/3 x 6 = 2

c) 100 + (125x3-125x2-125) x (1 + 3 + 5 + 7 + ...+ 97 + 99)

= 100 + [125x(3-2-1)] x A

= 100 + (125x0) x A

= 100 + 0 x A

= 100 + 0

= 100

Bài 2:

Gọi số đó là ab

(a+b) x 6 = ab

a x 6 + b x 6= a x 10 + b

b x 5 = a x 4

suy ra a=5; b=4; ab=54

Bài 3:

Vì các số lẻ x 5 đều có tận cùng là 5 nên các tích đều có tận cùng là 5.

Mà 5x3=15 nên P có tận cùng là 5

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

15 tháng 2 2016

Ta có : 

Số 20 khi nhân với 1 số sẽ tạo ra 1 chữ số 0 ở tích .

Số 25 khi nhân với 1 số sẽ tạo ra 2 chữ số 0 ở tích .

Số 30 khi nhân với 1 số sẽ tạo ra 1 chữ số 0 ở tích .

Số 35 khi nhân với 1 số sẽ tạo ra 1 chữ số 0 ở tích .

Số 40 khi nhân với 1 số sẽ tạo ra 1 chữ số 0 ở tích .

Số 45 khi nhân với 1 số sẽ tạo ra 1 chữ số 0 ở tích .

Số 50 khi nhân với 1 số sẽ tạo ra 2 chữ số 0 ở tích . 

Vậy có 9 chữ số 0 ở tích .

15 tháng 2 2016

Giải :
Trong tích đó có các thừa số chia hết cho 5 là :
5, 10, 15, 20, 25, 30, 35, 40, 45.
Hay 5 = 1 x 5 ; 10 = 2 x 5 ; 15 = 3 x 5; ........; 45 = 9 x 5.
Mỗi thừa số 5 nhân với 1 số chẵn cho ta 1 số tròn chục. mà tích trên có 10 thừa số 5 nên tích tận cùng bằng 10 chữ số 0.