K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

Ta có \(\left(2n\right)^2=4n^2>4n^2-1=\left(2n-1\right)\left(2n+1\right)\)

\(\Rightarrow\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(P_n^2=\frac{1^23^25^2...\left(2n-1\right)^2}{2^24^26^2...2n^2}< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3.3.5.5.7...\left(2n-1\right)\left(2n+1\right)}\)

\(P^2< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3^2.5^2...\left(2n-1\right)^2\left(2n+1\right)}=\frac{1}{2n+1}\)

\(\Rightarrow P< \frac{1}{\sqrt{2n+1}}\)

23 tháng 8 2016

có ai giúp với

NV
27 tháng 10 2019

Làm biếng gõ lại:

Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến

21 tháng 5 2018

Ta chứng minh \(2^2+4^2+...+\left(2n\right)^2=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)  (1)  

với mọi n \(\in\)N* , bằng phương pháp quy nạp 

Với n = 1, ta có \(2^2=4=\frac{2.1\left(1+1\right)\left(2.1+1\right)}{3}\)

=> (1) đúng khi n = 1 

Giả sử đã có (1) đúng khi n = k , k\(\in\)N* , tức là giả sử đã có : 

\(2^2+4^2+...+\left(2k\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}\)

Ta chứng minh (1) đúng khi n = k + 1 , tức là ta sẽ chứng minh 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

=> Từ giả thiết quy nạp ta có : 

\(2^2+4^2+...+\left(2k\right)^2+\left(2k+2\right)^2=\frac{2k\left(k+1\right)\left(2k+1\right)}{3}+\left(2k+2\right)^2\)

                                                                    \(=\frac{2\left(k+1\right)\left(2k^2+k+6k+6\right)}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{3}\)

                                                                    \(=\frac{2\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{3}\)

Từ các chứng minh trên , suy ra (1) đúng với mọi n \(\in\)N*                                             

21 tháng 5 2018

ai quan tam lam chi

18 tháng 3 2017

Ta có: \(\frac{1.3.5.7.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}\)

\(=\frac{1.2.3.4..5.6...\left(2n-1\right).2n}{\left(2.4.6....2n\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)

\(=\frac{1.2.3.4.5.6...\left(2n-1\right)}{2^n.1.2.3....n\left(n+1\right)\left(n+2\right)\left(n+3\right)....2n}\)

\(=\frac{1}{2^n}\left(đpcm\right)\)

28 tháng 5 2016

a, 59x + 46y = 2004

Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn

=> x là số chẵn, mà x là số nguyên tố

=> x = 2

=> 2.59 + 46y = 2004

=> 46y = 2004 ‐ 118

=> 46y = 1886

=> y = 1886:46 => y = 41

Vậy x = 2; y = 41

29 tháng 5 2016

đã làm đề 23 rùi hả!!!!!

3 tháng 8 2016

Tôi cũng là của FC Real Madrid ở Hà Nam.

Chúng mình kết bạn nhé.hihi.