cho tứ giác ABCD có 2 đường chéo cắt tại O tạo thành \(\widehat{AOD}\). Chứng minh rằng SABCD= \(\frac{1}{2}\)X AC xBD XSin \(\widehat{AOD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.
Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)
Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)
Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP
Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700
Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)
Kết luận: ...
Cho mik sửa tí: SABCD = SMNP = 1/2.MN.NP.Sin^MNP = 1/2.4.5,3.Sin700 \(\approx\)10,0 (cm2)
Vậy SABCD \(\approx\)10,0 cm2.
2) Giải phương trình:
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
<=> \(\left(\frac{2-x}{2017}-\frac{1-x}{2018}\right)+\left(\frac{x}{2019}-1\right)=0\)
<=> \(\frac{2019-x}{2017.2018}+\frac{x-2019}{2019}=0\)
<=> \(\left(x-2019\right)\left(\frac{1}{2019}-\frac{1}{2017.2018}\right)=0\)
<=> x - 2019 = 0
<=> x = 2019
b) Xét ΔFDC có
A\(\in\)FD(gt)
B\(\in\)FC(gt)
AB//CD(gt)
Do đó: \(\dfrac{FA}{AD}=\dfrac{FB}{BC}\)(Định lí Ta lét)
\(\Leftrightarrow\dfrac{FA}{FB}=\dfrac{AD}{BC}=1\)
hay FA=FB
Ta có: FA+AD=FD(A nằm giữa F và D)
FB+BC=FC(B nằm giữa F và C)
mà FA=FB(cmt)
và AD=BC(ABCD là hình thang cân)
nên FD=FC
Ta có: FA=FB(cmt)
FD=FC(cmt)
Do đó: \(FA\cdot FD=FB\cdot FC\)(đpcm)
a) Ta có: ABCD là tứ giác nội tiếp(gt)
nên \(\widehat{A}+\widehat{C}=180^0\)(hai góc đối)(1)
Ta có: ABCD là hình thang(AB//CD)
nên \(\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{D}\)
Hình thang ABCD(AB//CD) có \(\widehat{C}=\widehat{D}\)(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Xét \(\Delta AEB\)và \(\Delta DEC\)có
\(\hept{\begin{cases}\widehat{AEB}=\widehat{DEC}\\\widehat{BAE}=\widehat{CDE}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEB\approx\Delta DEC\)
\(\Rightarrow\frac{AE}{DE}=\frac{BE}{CE}\)
\(\Rightarrow EA.EC=DE.BE\left(1\right)\)
Xét \(\Delta ABE\)và \(\Delta DBA\)có
\(\hept{\begin{cases}\widehat{BAE}=\widehat{BDA}\left(gt\right)\\\widehat{ABE}\left(chung\right)\end{cases}}\)
\(\Rightarrow\Delta ABE\approx\Delta DBA\)
\(\Rightarrow\frac{AB}{DB}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=DB.BE\left(2\right)\)
Theo đề bài ta cần chứng minh
\(BE^2=AB^2-EA.EC\)
\(\Leftrightarrow BE^2=AB^2-DE.BE\)(theo (1))
\(\Leftrightarrow BE\left(BE+DE\right)=AB^2\)
\(\Leftrightarrow BE.BD=AB^2\) (Theo (2) thì cái này đúng)
Vậy ta có ĐPCM
bạn có thể gửi hình vào facebook của mình https://www.facebook.com/maximilian.mark.16 để mình giải thử cho bạn