K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

a) Gọi F là điểm đối xứng với A qua O AF là đường kính của (O)

Ta có ACF = ABF = 90o (góc nội tiếp chắn nửa đường tròn) AC CF , AB BF

Mà BH AC, CH AB CF // BH, BF // HC

Suy ra BHCF là hình bình hành Trung điểm M của BC cũng là trung điểm của HF.

OM là đường trung bình của ∆ AHF AH = 2OM

a: góc AMO=góc AFO=góc ANO=90 độ

=>A,M,F,O,N cùng thuộc 1 đường tròn

b: Gọi I là giao của MN với AO

=>I là trung điểm của MN

AI*AO=AM^2

Xét ΔAMH và ΔAFM có

góc AMH=góc AFM

góc MAH chung

=>ΔAMH đồng dạng với ΔAFM

=>AH*AF=AI*AO

=>góc AHI=góc AOF

=>OFHI nội tiếp

=>M,N,H thẳng hàng

a) Xét tứ giác OCDB có 

\(\widehat{OBD}+\widehat{OBC}=180^0\)

Do đó: OCDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

21 tháng 6 2017

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2