Cho a, b,c là ba số đôi một khác nhau thỏa mãn: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Tính giá trị của biểu thức: \(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}\frac{c^2}{c^2+2ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cố tử thần ♡๖ۣۜŦεαм♡❤Ɠ长♡ღ
Chị ơi dùng bđt BCS , dấu = xảy ra P =1 như thế có gọi là giá trị của P=1 không nhỉ ?
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow\hept{\begin{cases}ab=-bc-ca\\bc=-ca-ab\\ca=-ab-bc\end{cases}}\)
Thay vào ta được: \(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2+bc-ca-ab}=\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)
Tương tự: \(\frac{b^2}{b^2+2ca}=\frac{b^2}{\left(b-a\right)\left(b-c\right)}\) ; \(\frac{c^2}{c^2+2ab}=\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(\Rightarrow P=-\left[\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right]\)
\(=-\left[\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right]\)
\(=\frac{\left(b-c\right)\left(a^2+bc-ca-ab\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{\left(b-c\right)\left(a-b\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+ac+bc=0\)
\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ab-ac+bc}=\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)
Tương tự: \(\frac{b^2}{b^2+2ac}=\frac{b^2}{\left(b-a\right)\left(b-c\right)};\frac{c^2}{c^2+2ac}=\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(P=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\Rightarrow ab+ac+bc=0\Rightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ac-ab\end{cases}}\)
Nên \(\frac{a^2}{a^2+2bc}=\frac{a^2+ab+bc+ac}{a^2+bc-ac-ab}=\frac{\left(a+c\right)\left(a+b\right)}{\left(a-c\right)\left(a-b\right)}\)
\(\frac{b^2}{b^2+2ac}=\frac{b^2+ab+bc+ac}{b^2+ac-ab-bc}=\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}\)
\(\frac{c^2}{b^2+2ab}=\frac{c^2+ab+ac+bc}{b^2+ab-ac-bc}=\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(P=\frac{\left(a+b\right)\left(a+c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a+b\right)\left(b+c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c+b\right)\left(c+a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a+b\right)\left(a+c\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left[\left(a+c\right)\left(b-c\right)+\left(b+c\right)\left(c-a\right)\right]+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a+b\right)\left(2bc-2ac\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{-2c\left(a+b\right)\left(a-b\right)+\left(c+b\right)\left(c+a\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left[-2c\left(a+b\right)+\left(b+c\right)\left(c+a\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(-a^2+ab+c^2-bc\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Vậy \(P=1\)
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> $\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}$a^2+(a−c)^2b^2+(b−c)^2 =(a−c)^2+2b(a−c)+(a−c)^2(b−c)^2+2a(b−c)+(b−c)^2 =2(a−c)^2+2b(a−c)2(b−c)^2+2a(b−c) =2(a−c)(a−c+b)2(b−c)(b−c+a) =a−cb−c
1) (a+b+c)^2=a^2+b^2+c^2 ab+bc+ca=0
<-->bc=−ac−ca -->a^2+2bc=a^2+bc−ca−ab
<--> a^2+2bc=(a−c)(a−b)
Tương tự với 2 phân số còn lại rồi quy đồng
2) Cộng hai vế của c^2+2(ab−ac−bc)=0 lần lượt với a^2;b^2 ta có:
a^2=c^2+2ab−2ac−2bc+a^2=(a−c)^2+2b(a−c) (1)
b^2=c^2+2ab−2ac−2bc+b^2=(b−c)^2+2a(b−c) (2)
Từ (1) và (2) -> \(\frac{\text{a^2+(a−c)^2}}{\text{b^2+(b−c)^2}}=\frac{\text{(a−c)^2+2b(a−c)+(a−c)^2}}{\text{(b−c)^2+2a(b−c)+(b−c)^2}}=\frac{\text{2(a−c)^2+2b(a−c)}}{\text{2(b−c)^2+2a(b−c)}}=\frac{\text{2(a−c)(a−c+b)}}{\text{2(b−c)(b−c+a)}}=\frac{a-c}{b-c}\)
\(a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow ab+ac+bc=0\)
\(\Leftrightarrow\hept{\begin{cases}ab=-ac-bc\\ac=-ab-bc\\bc=-ab-ac\end{cases}}\)
Ta có : \(a^2+2bc=a^2+bc+bc=a^2+bc-ab-ac=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
CMTT ta có : \(\hept{\begin{cases}b^2+2ac=\left(b-a\right)\left(b-c\right)\\c^2+2ab=\left(c-a\right)\left(c-b\right)\end{cases}}\)
Thay vào A ta được :
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(A=\frac{b-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{-a+c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=\frac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(A=0\)