K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1 2021

H đối xứng B qua G \(\Rightarrow\overrightarrow{BH}=2\overrightarrow{BG}=2\left(\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\right)=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{MH}=\overrightarrow{MA}+\overrightarrow{AH}=-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)

NV
10 tháng 12 2021

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{BG}=\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

I đối xứng B qua G \(\Rightarrow\) \(\overrightarrow{BI}=2\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}=-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CA}+\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

24 tháng 10 2016

câu 2 ( các kí hiệu vecto khi lm bài thỳ b tự viết nhé mk k viết kí hiệu để trả lời cho nhanh hỳ hỳ )

OA+ OB + OC = OA'+ OB' + OC'

<=> OA - OA' + OB - OB' + OC - OC' = 0

<=> A'A + B'B + C'C = 0

<=> 2 ( BA + CB + AC ) = 0

<=> 2 ( CB + BA + AC ) = 0

<=> 2 ( CA + AC ) = 0

<=> 0 = 0 ( luôn đúng )

 

 

24 tháng 10 2016

câu 1 ( các kí hiệu vecto b cx tự viết nhá )

VT = OD + OC = OA + AD + OB + BC = OA + OB + AD + BC = BO + OB + AD + BC = 0 + AD + BC = AD + BC = VP ( đpcm)

10 tháng 8 2019

A B C M G H

\(\text{a) }\overrightarrow{AH}=\overrightarrow{AG}+\overrightarrow{GH}=\overrightarrow{AG}+\overrightarrow{BG}=\frac{1}{3}\left(3\overrightarrow{AG}+3\overrightarrow{BG}\right)\\ =\frac{1}{3}\left(\overrightarrow{AA}+\overrightarrow{AC}+\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB}\right)\\ =\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{AC}\right)\\ =\frac{1}{3}\left(2\overrightarrow{AC}-\overrightarrow{AB}\right)=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)

\(\text{b) }\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}=-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\)

\(\text{c) }\overrightarrow{MH}=\overrightarrow{MC}+\overrightarrow{CH}=\frac{1}{2}\overrightarrow{BC}-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AB}\)