Cho a = 111.......1 ( 1000 chữ số 1 )
b = 111.......1 ( 2020 chữ số 1 )
Chứng minh : ab - 1 ⋮ 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Bài 2:
b: \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
=>-12x-2=-17x+20
=>5x=22
hay x=22/5
c: \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-\left(4x^2+16x+7x+28\right)=10x^2-2x+5x-1\)
\(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\text{Δ}=\left(-19\right)^2-4\cdot10\cdot\left(-33\right)=1681>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{19-41}{20}=\dfrac{-22}{20}=\dfrac{-11}{10}\\x_2=\dfrac{19+41}{20}=3\end{matrix}\right.\)
Bài 2:
b)\((2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)\)
\(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow5x=22\Rightarrow x=\frac{22}{5}\)
c)\((8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)\)
\(\Leftrightarrow24x^2+7x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Leftrightarrow\left(x-3\right)\left(10x+11\right)=0\)
Suy ra x=3;x=-11/10
Ta có \(ab-1=1000\cdot2020-1=2019999\)
Mà tổng của 2019999 là 39 => 39 chia hết cho 3 hay ab-1 chia hết cho 3
Chúc bạn học tốt !!