K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

( a + b ) ( a + c ) = 8 hay a2 + ab + ac + bc = 8

\(\Rightarrow\)a ( a + b + c ) + bc = 8

\(\sqrt{abc\left(a+b+c\right)}=\sqrt{a\left(a+b+c\right).bc}\le\frac{a\left(a+b+c\right)+bc}{2}=4\)

\(\Rightarrow abc\left(a+b+c\right)\le16\)

Vậy GTLN của A là 16 

15 tháng 8 2019

mình cảm ơn ạ

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Bạn xem lại, làm gì có cái ảnh đề nào đâu?

NV
21 tháng 4 2023

Trước hết ta c/m bổ đề sau:

Với mọi số thực dương x;y ta luôn có:

\(x^4+y^4\ge xy\left(x^2+y^2\right)\)

Thật vậy, BĐT đã cho tương đương:

\(x^4-x^3y+y^4-xy^3\ge0\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng)

Áp dụng bổ đề trên ta có:

\(T\le\dfrac{a}{bc\left(b^2+c^2\right)+a}+\dfrac{b}{ac\left(a^2+c^2\right)+b}+\dfrac{c}{ab\left(a^2+b^2\right)+c}\)

\(\Rightarrow T\le\dfrac{a^2}{abc\left(b^2+c^2\right)+a^2}+\dfrac{b^2}{abc\left(a^2+c^2\right)+b^2}+\dfrac{c^2}{abc\left(a^2+b^2\right)+c^2}\)

\(\Rightarrow T\le\dfrac{a^2}{a^2+b^2+c^2}+\dfrac{b^2}{a^2+b^2+c^2}+\dfrac{c^2}{a^2+b^2+c^2}=1\)

\(T_{max}=1\) khi \(a=b=c=1\)

21 tháng 4 2023

thầy giải dễ hiểu quá em cảm ơn thầy ạ

31 tháng 8 2021

CMR gì bạn?

Đề không hiện 

31 tháng 8 2021

undefined

30 tháng 6 2019

sorry

6 tháng 2 2017

ab+bc+ca=3ac hay ab+bc+ca=3abc

7 tháng 2 2017

Cứ phải cảnh giác bạn à:

không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều

khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi

27 tháng 1 2022

Cho biểu thức A = 3/n+2

a)số nguyên n phải thỏa mãn điều kiện  gì để A là phân số

Diều kiện: \(n+2\ne0\Leftrightarrow n\ne-2\)

b)tính giá trị của A khi n=3

Thay n=3 vào A ta được;

  A=\(\frac{3}{3+2}=\frac{3}{5}\)

c)tìm các số nguyên n để A là một số nguyên

Để A là số nguyên thì: \(3⋮n+2\Leftrightarrow n+2\inƯ\left(3\right)\)

\(\Leftrightarrow n+2\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{-5;-3;-1;1\right\}\)

Vậy .....