K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2019

1/ \(cosx=\frac{1}{3}\Rightarrow x=\pm a+k2\pi\) với \(cosa=\frac{1}{3}\)

Tổng các nghiệm:

\(\sum x=a+a+2\pi+\left(-a+2\pi\right)+\left(-a+4\pi\right)=8\pi\)

2/ ĐKXĐ:...

\(\Leftrightarrow1+tan^2x-2tanx-4=0\)

\(\Leftrightarrow tan^2x-2tanx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arctan3+k\pi\end{matrix}\right.\)

b/ Không hiểu đề đoạn này \(sinx.cosx\left(x+\frac{\pi}{2}\right)\) , góc trong ngoặc không biết là của cái gì?

c/ ĐKXĐ:...

\(1+cot^2x+3tan^2x=5\)

\(\Leftrightarrow\frac{1}{tan^2x}+3tan^2x-4=0\)

\(\Leftrightarrow3tan^4x-4tan^2x+1=0\)

\(\Rightarrow\left[{}\begin{matrix}tan^2x=1\\tan^2x=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}tanx=\pm1\\tanx=\pm\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{4}+k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
7 tháng 10 2019

d/

ĐKXĐ: \(sinx\ne0\Rightarrow cosx\ne\pm1\)

\(2.cos^2x=1-cosx\)

\(\Leftrightarrow2cos^2x+cosx-1=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=-1\left(l\right)\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow cosx=cos\frac{\pi}{3}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
16 tháng 9 2021

3.

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

16 tháng 9 2021

câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ

NV
7 tháng 8 2021

ĐKXĐ: \(cos2x\ne\dfrac{1}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k\pi\)

\(\sqrt{3}sin^2x-2sinx.cosx-\sqrt{3}cos^2x=0\)

\(\Leftrightarrow-sin2x-\sqrt{3}\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow sin2x+\sqrt{3}cos2x=0\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{\pi}{3}=k\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nghiệm này bao gồm 2 họ nghiệm: \(\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Do đó sau khi loại nghiệm theo ĐKXĐ ta được nghiệm của pt là: \(x=\dfrac{\pi}{3}+k\pi\)