K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

 \(Ta\)có :\(a\)=\(\frac{2017\cdot2018-1}{2017.2018}\)=\(\frac{2017.2018}{2017.2018}\)-\(\frac{1}{2017.2018}\)=1-\(\frac{1}{2017.2018}\)

          \(b\)=\(\frac{2019.2020-1}{2019.2020}\)=\(\frac{2019.2020}{2019.2020}\)-\(\frac{1}{2019.2020}\)=1-\(\frac{1}{2019.2020}\)

Vì \(\frac{1}{2018.2019}\)\(\frac{1}{2019.2020}\)nên \(a\)\(b\)(sử dụng phần bù)

  

   

23 tháng 3 2023


 

1 tháng 9 2020

a) Ta có : \(\frac{-3}{100}< 0< \frac{2}{3}\)

\(\Rightarrow\frac{-3}{100}< \frac{2}{3}\)

b) Ta có : \(\frac{267}{268}< 1< \frac{1347}{1343}\)

\(\Rightarrow\frac{267}{268}< \frac{1347}{1343}\)

\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)

c) Ta có : \(\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)

                 \(\frac{2018.2019-1}{2018.2019}=\frac{2018.2019}{2018.2019}-\frac{1}{2018.2019}=1-\frac{1}{2018.2019}\)

mà \(2017.2018< 2018.2019\)

\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

\(\Rightarrow\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)

d) Ta có : \(\frac{2017.2018}{2017.2018+1}=\frac{2017.2018+1}{2017.2018+1}-\frac{1}{2017.2018+1}=1-\frac{1}{2017.2018+1}\)

                 \(\frac{2018.2019}{2018.2019+1}=\frac{2018.2019+1}{2018.2019+1}-\frac{1}{2018.2019+1}=1-\frac{1}{2018.2019+1}\)

mà \(2017.2018+1< 2018.2019+1\)

\(\Rightarrow\frac{1}{2017.2018+1}>\frac{1}{2018.2019+1}\)

\(\Rightarrow1-\frac{1}{2017.2018+1}< 1-\frac{1}{2018.2019+1}\)

\(\Rightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}\)

 

19 tháng 7 2018

\(a,\frac{131313}{151515}+\frac{131313}{353535}+\frac{131313}{636363}+\frac{131313}{999999}\)

\(=\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=13\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{7.9}\right)\)

\(=13\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(=13.\frac{2}{9}=\frac{26}{9}\)

\(b,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

P/s :Dấu chấm là dấu nhân nha

19 tháng 7 2018

phần c đâu bn

6 tháng 10 2018

\(A=2019x2020\)và \(B=2020^2\)\(x2019^2\)

DỄ THÔI BN Ạ

B =2020 . 2020 . 2019 . 2019

SUY RA A <B

23 tháng 6 2017

1. Bài giải:

Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)

\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)

Vậy \(A=\frac{1001}{501}\)

2 tháng 8 2018

\(3A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{2017\cdot2020}\)

\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2020}\)

\(3A=1-\frac{1}{2020}\)

\(A=\frac{673}{2020}\)

Dấu '.' là dấu nhân nha

Học tốt~

2 tháng 8 2018

bạn Bonking làm đúng r

6 tháng 12 2019

Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc

ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc

ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0

(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0

ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0

(b+c)(ab+ac+bc+a^2)=0

(b+c)(a+b)(a+c)=0

*th1:b+c=0=> b=-c

=> b^2017 +c^2017 =0 

mà a^2017 +b^2017 +c^2017=1

=>a^2017=1 => a=1 

thay vào A rồi dc A=1 

các th khác tương tự

1 tháng 8 2017
     

\(A=\frac{2016^{2016}+1}{2016^{2017}+1}\Rightarrow2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)

\(B=\frac{2016^{2017}-3}{2016^{2018}-3}\Rightarrow2016B=\frac{2016^{2018}-6048}{2016^{2018}-3}=1+\frac{-6045}{2016^{2018}-3}\)

Vì \(\frac{2015}{2016^{2017}+1}>0;\frac{-6045}{2016^{2018}-3}< 0\)

Nên: A>B