Cho tam giác ABC vg ở A. Trên BC lấy D, E sao cho BD= BA, CA=CE
- CMR: giao điểm I các phân giác của tam giác ABC thì cũng là giao điểm các đg trung trực của tam giác DEA
- Gọi m là khoảng cách từ I đến các cạnh của tam giác ABC. Tính DE theo m
- Tính góc DIE
giúp mình vs mình làm cần gấp
a) \(\Delta\)ABD cân ở B vì có BA = BD,BI là phân giác của góc ABD nên BI là đường trung trực của AD
\(\Delta\)ACE cân tại C vì có CA = CE,CI là tia phân giác của góc ACE nên CI là đường trung trực của AE
Vậy I là giao điểm của các đường trung trực của \(\Delta\)AED
b) Từ I kẻ \(IP\perp AB,IM\perp BC,IN\perp CA\)
thì IP = IM = IN = m
\(\Delta\)API và \(\Delta\)ANI là tam giác vuông cân nên AP = AN = PI = IN = m
\(\Delta\)IPB = \(\Delta\)IMP (cạnh huyền - góc nhọn) => BP = PM(hai cạnh tương ứng)
Mà BA = BD => MD = AP = m
\(\Delta\)INC = \(\Delta\)IMC (cạnh huyền - góc nhọn) => CM = CN(hai cạnh tương ứng)
Mà CE = CA => EM = AN = m
Vậy DE + DM + ME = 2m
c) \(\Delta\)IDE có \(IM=\frac{1}{2}DE\)nên ^DIE là góc vuông => ^DIE = 900
Theo tính chất góc ngoài của tam giác , ta suy ra :
^EAD = ^EAx + ^xAD = 1/2(^EIx + ^xID) = 1/2^EID = 1/2.900 = 450