Bài 1 . Cho ▲ ABC vuông tại A có AB <AC . Trên cạnh huyền BC lấy điểm K sao cho CK= CA . Vẽ CM ⊥ AK tại M . Vẽ AD⊥BC tại D . AD cắt CM tại H
a) ▲MCK=▲MCA
b) HK//AB
c)HD<HA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
https://docs.google.com/document/d/1Wuo1vFdubrUg8F8-Ng_f-K8sda_JE_rRM704rtBrI-Q/edit?usp=sharing
Ta có H1+ H2+H3=180
E1+E2=180
mà E1=H1
nên E2=H2+H3
Tong 3 goc trong tam giác: E2+H2+A1=180
(H2+H3)+H2+A1=180
2.H2+H3+A1=180
SUY RA: H2=(180-90-A1):2 *** H3=90 hihi
=45-A1/2
mà A1=90-2A2
thay vào *** ta có H2=45-(90-2.A2)/2=A2
vậy H2=A2 hay EH//AD
Ta có: CA =CK (gt)
=> ΔCAK cân tại A (2 cạnh = nhau)
Mà: CM ⊥ AK (gt)
Nên: CM là p/g góc ACK ( T/c Δcân)
Xét ΔMCK và ΔMCA, có:
CK = CA (gt)
góc MCK = góc MCA ( vì CM là p/g góc ACK)
CM: cạnh chung
Vậy ΔMCK = ΔMCA ( c - g - c)