so sánh A=100+101 phần 101-100 và B=100^2+101^2 phần 101^2-100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 100+101/101+102
= 100/101+102 + 101/101+102
Vì 100/101>100/101+102
101/102 > 101/101+102
=>100/101+101/102 > 100+101/101+102
đặt M=101.102.11=113322
Ta có:
100/101=(100.102.11)/(101.102.11)
=112200/M
101/102=(101.101.11)/(101.102.11)
=112211/M
--->10 phân số trong khoảng này là:
112201/M; 112202/M; 112203/M; 112204/M; 112205/M; 112206/M; 112207/M; 112208/M; 112209/M; 112210/M;
ta có \(\frac{1}{\sqrt{x}}\)= \(\frac{2}{2\sqrt{x}}\)< \(\frac{2}{\sqrt{x}+\sqrt{x-1}}\)= 2(\(\sqrt{x}-\sqrt{x-1}\))
Áp dụng vào A \(\Rightarrow\)A < 1 + 2(\(\sqrt{2}-\sqrt{1}\)) + 2(\(\sqrt{3}-\sqrt{2}\)) + ... + 2(\(\sqrt{100}-\sqrt{99}\)) = 1 - 2 + \(2\sqrt{100}\)= \(2\sqrt{100}-1\)< \(2\sqrt{101}-1=B\)
\(\Rightarrow\)A < B
Ta có \(A=1+2^2+2^3+....+2^{99}+2^{100}\)
\(2A=2+2^3+2^4+2^5+...+2^{100}+2^{101}\)
Suy ra \(2A-A=2^{101}-1=B\)
Do đó A =B
Vậy A =B
A = 1 + 2^2 + 2^3 + ... + 2^99 + 2^100
2A = 2 + 2^3 + 2^4 + ... + 2^100 + 2^101
2A - A = ( 2 + 2^3 + 2^4 + ... + 2^100 + 2^101 ) - ( 1 + 2^2 + 2^3 + ... + 2^99 + 2^100 )
A = 2^101 - 1
Vì A = 2^101 - 1 và B = 2^101 - 1
=> A = B
Vậy A=B