Câu 1:Cho tam giác ABC có M là trung điểm BC,I là trung điểm AM.Phân tích vector AI theo vector AB và AC
Câu 2:Cho tam giác ABC và điểm m thỏa mãn \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\).Chọn khẳng định đúng:
A.M trùng A
B.M trùng B
C.M trùng C
D.M là trọng tâm tam giác ABC
Câu 3:Gọi G là trọng tâm tam giác ABC.Đặt \(\overrightarrow{GA}=\overrightarrow{a},\overrightarrow{GB}=\overrightarrow{b}\).Hãy tìm m,n để có \(\overrightarrow{BC}=\overrightarrow{ma}+\overrightarrow{mb}\)
Câu 4:Cho 3 điểm A,B,C không thẳng hàng và điểm M thỏa mãn đẳng thức vector \(\overrightarrow{MA}=x\overrightarrow{MB}+y\overrightarrow{MC}\).Tính giá trị biểu thức P=x+y
Câu 1.
I là trung điểm của AM \(\Rightarrow\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AM}\)
M là trung điểm của BC \(\Rightarrow\) \(\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(\Rightarrow\overrightarrow{AI}=\frac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Câu 2.
Ta có: \(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{MA}-\overrightarrow{MC}\)
\(\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)
\(\Rightarrow\) M là trọng tâm của tam giác ABC.
\(\Rightarrow\) D đúng.
Câu 1:
Theo quy tắc TĐ ta có:
\(\overrightarrow{AM}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}\)
Mà \(\overrightarrow{AI}=\frac{\overrightarrow{AM}}{2}\Rightarrow\overrightarrow{AI}=\frac{\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}}{2}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{4}\)
Câu 2:
Có \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{CA}\Rightarrow\overrightarrow{MC}+\overrightarrow{MB}+\overrightarrow{MA}=0\)
Vậy M là trọng tâm tam giác ABC (D)
Câu 3 sai đề, phải là \(\overrightarrow{BC}=m.\overrightarrow{a}+n.\overrightarrow{b}\) ms đúng chứ?
Câu 4 để mai ik, dài lắm :))