K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

nhìu quá , nhìn mak thấy nản lun 

2 tháng 7 2015

d. \(=\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)^2}\right).\frac{\sqrt{a-1}\left(a-1\right)}{a-1-2\sqrt{a-1}}=\frac{\sqrt{a}-1}{\left(\sqrt{a}+1\right)^2}.\frac{\sqrt{a-1}\left(a-1\right)}{a-1-2\sqrt{a-1}}=\frac{\sqrt{a-1}\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(a-1-2\sqrt{a-1}\right)}\)

mk chỉ lm đc tới đêy thui ak ^^

17 tháng 8 2015

1)))))))

\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

 

17 tháng 8 2015

\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)

Bài bên trên là nhầm đề bài ạ:

Đây mới đúng:

\(\frac{2}{\sqrt{ab}}\div\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

27 tháng 11 2017

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(1-a\sqrt{a}+\sqrt{a}-a\right)\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a.\left(\sqrt{a}\right)^2-\left(\sqrt{a}\right)^2+a\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{a^2-2a+1}{\left(1-a\right)^2}=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)

\(=\left(\frac{a-1}{1-a}\right)^2=\left(-1\right)^2=1=VP\left(ĐPCM\right)\)

18 tháng 10 2020

Ta có :

\(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)\)

\(=4-a=VP\)

=> đpcm

18 tháng 10 2020

Bổ sung ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)dùm mình nhé ;-;