K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

bạn làm giống như tìm x để nó là số cp thôi

 

 

16 tháng 11 2021

Đặt A=\(1+x+x^2+x^3+x^4\)

=>4A=\(4x^4+4x^3+4x^2+4x+4\)

    4A=\((4x^4+4x^3+x^2)+(x^2+4x+4)+2x^2\)\(=(2x^2+x)^2+(x+2)^2+2x^2>(2x^2+x)^2\) (1)

Lại có:

4A=\((4x^4+x^2+2^2+4x^3+4x+8x^2)-5x^2\)

4A=\((2x^2+x+2)^2-5x^2\)\(<(2x^2+x+2)^2\)(2)

Vì A là số chính phương

=>4A cũng là số chính phương

Từ (1) và (2)

=>4A=\((2x^2+x+1)^2\)

Mà 4A=4\((1+x+x^2+x^3+x^4)\)

=>\((2x^2+x+1)^2=4(1+x+x^2+x^3+x^4)\)

Từ đây giải phương trình ra thôi

16 tháng 11 2021

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

16 tháng 11 2021

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

25 tháng 11 2018

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

25 tháng 11 2018

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

17 tháng 4 2016

2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)

kẻ bảng ra

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{7}\)

\(\Rightarrow 7(x+y)=xy\)

\(\Leftrightarrow (xy-7x)-7y=0\)

\(\Leftrightarrow x(y-7)-7(y-7)=49\)

\(\Leftrightarrow (x-7)(y-7)=49(*)\)

Vì $x,y$ đều là số nguyên dương nên \(x-7,y-7\geq -6\)

Do đó từ $(*)$ ta có xét những TH sau:

TH1: \(\left\{\begin{matrix} x-7=1\\ y-7=49\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=8\\ y=56\end{matrix}\right.\) (t/m)

TH2: \(\left\{\begin{matrix} x-7=49\\ y-7=1\end{matrix}\right.\Rightarrow x=56; y=8\) (t/m)

TH3: \(\left\{\begin{matrix} x-7=7\\ y-7=7\end{matrix}\right.\Rightarrow x=y=14\) (t/m)

Vậy ......

NV
16 tháng 11 2018

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{7}\Rightarrow\dfrac{1}{x}=\dfrac{y-7}{7y}\Rightarrow x=\dfrac{7y}{y-7}=7+\dfrac{49}{y-7}\)

Để x, y nguyên \(\Rightarrow49⋮y-7\Rightarrow y-7=Ư\left(49\right)=\left\{-49;-7;-1;1;7;49\right\}\)

\(y-7=-49\Rightarrow y=-42< 0\) (loại)

\(y-7=-7\Rightarrow y=0\) (loại)

\(y-7=-1\Rightarrow y=6\Rightarrow x=-42< 0\) (loại)

\(y-7=1\Rightarrow y=8\Rightarrow x=56\)

\(y-7=7\Rightarrow y=14\Rightarrow x=14\)

\(y-7=49\Rightarrow y=56\Rightarrow x=8\)

Vậy pt có 3 cặp nghiệm nguyên dương \(\left(x;y\right)=\left(56;8\right);\left(14;14\right);\left(8;56\right)\)