K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

(x - 1)(y - 4) = 3

=> x - 1; y - 4 thuộc Ư(3)

=> x - 1; y - 4 thuộc {1; 3; -1; -3}

ta có bảng :

x-1-11-33
y-4-33-11
x02-24
y1735

vậy_

\(\left(x-1\right)\left(x-4\right)=3\)

\(\Rightarrow x-1;y-4\inƯ\left(3\right)\)

Vì \(\in\)Ư (3)=\(\left\{\mp1;\mp3\right\}\)

Tìm xTa có 

 \(x-1=-1;x=-1+1=0\)

\(x-1=1;x=1+1=2\)

\(x-1=-3;x=-3+1=-2\)

\(x-1=3;x=3+1=4\)

Vậy .....

Tìm y Ta có :

\(y-4=-3;y=-3+4=1\)

\(y-4=3;y=3+4=7\)

\(y-4=-1;y=-1+4=3\)

\(y-4=1;y=1+4=5\)

22 tháng 1 2022

- Chắc là gọi thầy Nguyễn Việt Lâm thôi :)

NV
22 tháng 1 2022

1.

\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)

\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ

\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)

\(\Rightarrow n=4b\left(b+1\right)\)

Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn

\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)

Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1

Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2

\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\)

\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau

17 tháng 9 2020

Gọi số cần tìm là ab

Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8

Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ

=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3

=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6

Vậy số cần tìm là 63

17 tháng 9 2020

Gọi số cần tìm là a 

Ta có : a : 5 dư 3

=> a - 3 \(⋮\) 5(đk : a > 2)

Lại có a : 2 dư 1

=> a - 3 \(⋮\)2  (đk : a > 3)

=> a - 3 : 9 dư 6

Vì a - 3  \(⋮\)5 và a - 3  \(⋮\)2

=> a - 3 \(\in\)BC(5 ; 2) 

mà a nhỏ nhất => a - 3 nhỏ nhất 

=> a - 3 = BCNN(5 ; 2)

Lại có \(BC\left(5;2\right)=B\left(10\right)\)

=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)

=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)

mà a \(⋮\)9

=> a = 63 (Vì a nhỏ nhất)

Vậy số cần tìm là 63

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

8 tháng 7 2016

Do dãy 2000 số tự nhiên liên tiếp đó không có số nguyên tố nào nên chúng là hợp số.
Coi dãy đó chứa các số tự nhiên liên tiếp từ a + 2 đến a + 2001    \(\left(a\in N\right)\)
Để tất cả các số trên là hợp số thì a phải chia hết các số từ 2 đến 2001, vì vậy a = 2001!
Thế vào các số trên, ta có:
- a + 2 = 2001! + 2 = 2 ( 3 * 4 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
- a + 3 = 2001! + 3 = 3 ( 2 * 4 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
- a + 4 = 2001! + 4 = 4 ( 2 * 3 * 5 * ... * 2001 + 1 )                        ( là hợp số ) - thoả mãn
...................................................................................................................................
- a + 2001 = 2001! + 2001 = 2001 ( 2 * 3 * 4 * ... * 2000 + 1 )        ( là hợp số ) - thoả mãn
Vậy trong tập hợp số tự nhiên, dãy có 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào là:
2001! + 2  ;  2001! + 3  ;  2001! + 4  ;  ....  ; 2001! + 1999  ;  2001! + 2000  ; 2001! + 2001