HI!!!! Mọi người giúp mình giải bài này với ạ!!!!
( x - 1) . (y - 4) = 3
đề bài là hãy tìm số tự nhiên x và y
thanks a lot
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
Gọi số cần tìm là ab
Số chia 5 dư 3 thì chữ số tận cùng là 3 hoặc 8
Số chia 2 dư 1 thì chữ số tận cùng là các số lẻ
=> Số chia 5 dư 3 và chia 2 dư 1 có chữ số tận cùng là 3
=> ab = a3 chia hết cho 9 => a+3 chia hết cho 9 => a=6
Vậy số cần tìm là 63
Gọi số cần tìm là a
Ta có : a : 5 dư 3
=> a - 3 \(⋮\) 5(đk : a > 2)
Lại có a : 2 dư 1
=> a - 3 \(⋮\)2 (đk : a > 3)
=> a - 3 : 9 dư 6
Vì a - 3 \(⋮\)5 và a - 3 \(⋮\)2
=> a - 3 \(\in\)BC(5 ; 2)
mà a nhỏ nhất => a - 3 nhỏ nhất
=> a - 3 = BCNN(5 ; 2)
Lại có \(BC\left(5;2\right)=B\left(10\right)\)
=> a - 3 \(\in\left\{0;10;20;30;40;50;60;...\right\}\)
=> \(a\in\left\{3;13;23;33;43;53;63;...\right\}\)
mà a \(⋮\)9
=> a = 63 (Vì a nhỏ nhất)
Vậy số cần tìm là 63
Bài 8:
a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)
=>-3x-12x+7=0
=>-15x+7=0
=>-15x=-7
hay x=7/15
b: Thay x=1 vào pt, ta được:
\(a^2-4-12+7=0\)
\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)
hay \(a\in\left\{3;-3\right\}\)
c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)
Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0
hay \(a\notin\left\{4;-4\right\}\)
Do dãy 2000 số tự nhiên liên tiếp đó không có số nguyên tố nào nên chúng là hợp số.
Coi dãy đó chứa các số tự nhiên liên tiếp từ a + 2 đến a + 2001 \(\left(a\in N\right)\)
Để tất cả các số trên là hợp số thì a phải chia hết các số từ 2 đến 2001, vì vậy a = 2001!
Thế vào các số trên, ta có:
- a + 2 = 2001! + 2 = 2 ( 3 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 3 = 2001! + 3 = 3 ( 2 * 4 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
- a + 4 = 2001! + 4 = 4 ( 2 * 3 * 5 * ... * 2001 + 1 ) ( là hợp số ) - thoả mãn
...................................................................................................................................
- a + 2001 = 2001! + 2001 = 2001 ( 2 * 3 * 4 * ... * 2000 + 1 ) ( là hợp số ) - thoả mãn
Vậy trong tập hợp số tự nhiên, dãy có 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào là:
2001! + 2 ; 2001! + 3 ; 2001! + 4 ; .... ; 2001! + 1999 ; 2001! + 2000 ; 2001! + 2001
(x - 1)(y - 4) = 3
=> x - 1; y - 4 thuộc Ư(3)
=> x - 1; y - 4 thuộc {1; 3; -1; -3}
ta có bảng :
vậy_
\(\left(x-1\right)\left(x-4\right)=3\)
\(\Rightarrow x-1;y-4\inƯ\left(3\right)\)
Vì \(\in\)Ư (3)=\(\left\{\mp1;\mp3\right\}\)
Tìm xTa có
\(x-1=-1;x=-1+1=0\)
\(x-1=1;x=1+1=2\)
\(x-1=-3;x=-3+1=-2\)
\(x-1=3;x=3+1=4\)
Vậy .....
Tìm y Ta có :
\(y-4=-3;y=-3+4=1\)
\(y-4=3;y=3+4=7\)
\(y-4=-1;y=-1+4=3\)
\(y-4=1;y=1+4=5\)