K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

Áp dụng bđt Cô si cho 3 số ta đc

\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)

\(VT\ge3\sqrt[3]{\frac{1}{27}=}1\)

Dấu " = " xảy ra <=> x = y = z = 1

p/s : quên cách làm khúc giữa

3 tháng 7 2019

Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta đc :

\(\frac{x}{y^2+2}+\frac{y}{z^2+2}+\frac{z}{x^2+2}\ge3\sqrt[3]{\frac{xyz}{\left(y^2+2\right)\left(z^2+2\right)\left(x^2+2\right)}}\)

\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{1+2y^2x^2+2z^2x^2+2z^2y^2+4x^2+4z^2+4y^2+8}}\)( phân tích đa thức thành nhân tử )

\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2}{z^2}+\frac{2}{y^2}+\frac{2}{x^2}+4x^2+4z^2+4y^2}}\)( vì \(xyz=1\Rightarrow x^2y^2z^2=1\Rightarrow x^2y^2=\frac{1}{z^2}\)các phân số khác chứng minh tương tự )

\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\)( quy đồng mẫu số  ) ( A )

Áp dụng bất đẳng thức Cô si cho 3 số thực ko âm ta được :

\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{\left(2+4z^4\right)\left(2+4y^4\right)\left(2+4x^4\right)}{x^2y^2z^2}}\) ( 1 )

Ta có :

\(2+4x^4\ge2+4.1^4=6\) ( 2 ) 

\(2+4y^4\ge2+4.1^4=6\) ( vì x^4 , y^4 , z^4 đều là các lũy thừa số mũ chẵn ) ( 3 )

\(2+4z^4\ge2+4.1^4=6\)( 4 ) 

x^2 . y^2 . z^2 = ( xyz )^2 = 1^2 = 1 ( 5 )

Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) , ( 5 )  suy ra :

\(\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}\ge3\sqrt[3]{\frac{6^3}{1}}=18\) ( B )

Thay B vào A ta đc  :

\(\Rightarrow VT\ge3\sqrt[3]{\frac{1}{9+\frac{2+4z^4}{z^2}+\frac{2+4y^4}{y^2}+\frac{2+4x^4}{x^2}}}\ge3\sqrt[3]{\frac{1}{9+18}}=1\)

20 tháng 2 2019

giúp em liền

Ta có: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\) \(\left(\frac{1}{x^2+1}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-z\right)}{\left(1+x^2\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-z\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(1+Xy\right)}\ge0\)

=> đúng

Tương tự ta được: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+Xy}\ge\frac{2}{1+xyz}\) (vì z\(\ge1\) )

                                \(\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{2}{1+xyz}\)

                                  \(\frac{1}{z^2+1}+\frac{1}{x^2+1}\ge\frac{2}{1+xyz}\)

công vế theo vế \(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{1+xyz}\)

dấu "=" xảy ra <=> x=y=z=1

20 tháng 2 2019

ủa mà lạ lắm à nghen em nói em bắt đầu off rồi mà + cách nói ell giống pé châu => ai on nick này z?

2 tháng 1 2017

dvfvgf

14 tháng 8 2019

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

21 tháng 10 2016

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

22 tháng 10 2016

bạn viết gì mà mik chẳng hiểu gì cả

15 tháng 12 2021

em không biết

15 tháng 12 2021

gà quá

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

26 tháng 10 2020

Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)

\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)

Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

31 tháng 12 2015

là câu hỏi tương tự nha bạn

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)