Cho a,b,c là các số dương,chứng minh rằng:
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\ge\frac{a+b+c}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
\(\Rightarrow\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}\cdot\frac{b+c}{4bc}}=\frac{1}{a}\)
\(\Rightarrow\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge2\sqrt{\frac{ca}{b^2\left(c+a\right)}\cdot\frac{c+a}{4ca}}=\frac{1}{b}\)
\(\Rightarrow\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}\cdot\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng theo vế các bất đẳng thức trên ta được:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}+\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)nên:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hay\(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Bất đẳng thức xảy ra khi \(a=b=c\)
\(\frac{ab}{a+b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Làm tương tự với 2 phân thức còn lại rồi cộng vào ra đpcm
Ta có: \(\frac{2a^3}{a^6+bc}\le\frac{2a^3}{2a^3\sqrt{bc}}=\frac{1}{\sqrt{bc}}\\ \)
CMTT: \(\frac{2b^3}{b^6+ca}\le\frac{1}{\sqrt{ca}}\)
\(\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}\)\(=\) \(\frac{\sqrt{bc}}{bc}+\frac{\sqrt{ac}}{ac}+\frac{\sqrt{ab}}{ab}\)
\(\le\frac{a+c}{2ac}+\frac{b+c}{2bc}+\frac{a+b}{2ab}=\frac{2\left(ab+bc+ca\right)}{2abc}=\frac{ab+bc+ca}{abc}\) \(\le\frac{a^2+b^2+c^2}{abc}=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\left(đpcm\right)\)
Dấu bằng xảy ra khi : a = b = c =1
Bài làm:
Ta xét: \(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)
Tương tự ta chứng minh được: \(\frac{ca}{b^2\left(c+a\right)}\ge\frac{1}{b}\)và \(\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{c}\)
\(\Rightarrow VT+\frac{1}{4}\left(\frac{b+c}{bc}+\frac{c+a}{ca}+\frac{a+b}{ab}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow VT\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Dạ nếu em làm còn nhầm lẫn chỗ nào thì mong mn thông cảm ạ!
Ở đoạn tương tự mình viết nhầm phải là: \(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\) và \(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)nhé!
Học tốt!!!!
Với x,y>0 ta cm: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
=>\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
ÁP dụng vào bài toán ta có:
\(\frac{1}{a+b+2c}=\frac{1}{a+c+b+c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)
tương tự: \(\frac{4bc}{b+c+2a}\le\frac{bc}{a+b}+\frac{bc}{a+c};\frac{4ca}{c+a+2b}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)
Cộng 3 bđt trên vế theo vế ta dc \(4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{bc+ca}{a+b}+\frac{ab+ca}{b+c}+\frac{ab+bc}{a+c}=c+a+b\)
=>đpcm
Dấu "=" xảy ra <=> a=b=c
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)
\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)
\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)
\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)
Ta được BĐT:
\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)
\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)
=> đpcm
P/S: Làm tắt vs đoạn này k^o chắc mấy :V
Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)
Không use condition của đề bài :))
Ta co:
\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)
\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)
equelity iff \(a=b=c=3\)
#)Giải :
Ta có :
\(\hept{\begin{cases}\frac{ab}{b+c+a+b}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\\\frac{bc}{a+b+a+c}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\\\frac{ac}{b+c+a+b}\le\frac{ac}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\end{cases}}\)
\(\Rightarrow VT\le\frac{1}{a+b}.\left(\frac{bc}{4}+\frac{ac}{4}\right)+\frac{1}{a+c}.\left(\frac{bc}{4}+\frac{ab}{4}\right)+\frac{1}{b+c}.\left(\frac{ac}{4}+\frac{ab}{4}\right)\)
\(=\frac{1}{a+b}.\frac{c\left(a+b\right)}{4}+\frac{1}{a+c}.\frac{b\left(a+c\right)}{4}+\frac{1}{b+c}.\frac{a\left(b+c\right)}{4}\)
\(=\frac{c}{4}+\frac{b}{4}+\frac{a}{4}\)
\(\Rightarrow\frac{a+b+c}{4}\)
\(\Rightarrowđpcm\)