K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

\(x^3+x^2-x+2=x^3+2x^2-x^2-2x+x+2=x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)=\left(x+2\right)\left(x^2-x+1\right)\)

9 tháng 10 2021

Sao mik lại ra khác nhỉ?

26 tháng 5 2021

Ta có

 \(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)

Nên

 \(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)

 

26 tháng 5 2021

\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)

\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)

\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)

\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)

\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\) 

14 tháng 10 2021

Bài 4: 

b: Xét ΔABK vuông tại A có AD là đường cao ứng với cạnh huyền BK

nên \(BD\cdot BK=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BD\cdot BK=BH\cdot BC\)

14 tháng 10 2021

em cảm ơn ạ nhưng mà e cần CM câu c chứ ko phải là câu b ạ

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)

Do đó: x=33; y=55

2 tháng 1 2022

\(\dfrac{x}{y}=\dfrac{3}{5}\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2.3-5}=\dfrac{11}{1}=11\)

\(\dfrac{x}{3}=11\Rightarrow x=33\\ \dfrac{y}{5}=11\Rightarrow y=55\)

NV
26 tháng 3 2023

10.

\(H\left(x\right)=-5x^4+10x^3-15x+1\)

\(=-5x\left(x^3-2x^2+3\right)+1\)

\(=-5x.0+1\)

\(=1\)

9.

\(P\left(x\right)-Q\left(x\right)=\left(1-a\right)x^3+x^2+x-6\)

\(P\left(x\right)-Q\left(x\right)\) là đa thức bậc 3 khi và chỉ khi \(1-a\ne0\)

\(\Rightarrow a\ne1\)

13 tháng 6 2021

`y=sin^4x + cos^4 x+4`

`=(sin^2x)^2 + (cos^2x)^2+4`

`=(sin^2x + 2.sin^2x . cos^2x + cos^2x) - 2sin^2xcos^2x +4`

`= (sin^2x+cos^2x)^2 - 1/2 (2sinxcox).(2sinxcosx) +4`

`= 1^2 -1/2 sin^2 2x +4`

13 tháng 6 2021

Arggggg, lỗi rồi...

17 tháng 3 2022

bạn bấm máy tính hoặc giải hệ:

\(\left\{{}\begin{matrix}27x+56y=11\\1,5x+y=0,4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}27x+56y=11\\84x+56y=22,4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}57x=11,4\\27x+56y=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0,2\\27.0,2+56y=11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0,2\\y=0,1\end{matrix}\right.\)

17 tháng 3 2022

bấm hệ của 1 và 2

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2