K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

\(hpt\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)\(\Rightarrow x=y=z=0\) \(là\) \(nghiệm\)

\(x=y=z\ne0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2\left(x+y\right)}{2xy}=\dfrac{3xy}{2xy}\\\dfrac{6\left(y+z\right)}{6yz}=\dfrac{5yz}{6yz}\\\dfrac{3\left(x+z\right)}{3zx}=\dfrac{4xz}{3zx}\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{4}{3}\end{matrix}\right.\)\(ddặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\b+c=\dfrac{5}{6}\\a+c=\dfrac{4}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1=\dfrac{1}{x}\Leftrightarrow x=1\left(tm\right)\\b=\dfrac{1}{2}=\dfrac{1}{y}\Leftrightarrow y=2\left(tm\right)\\c=\dfrac{1}{3}\Leftrightarrow z=3\left(tm\right)\end{matrix}\right.\)

 

16 tháng 2 2022

TK

Hệ có nghiệm là x = y = z = 0

Với xyz ≠ 0 thì (I) được viết lại

\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{5}{6}\\\dfrac{z+x}{zx}=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left(II\right)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{5}{6}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{4}{3}\end{matrix}\right.\)

Cộng 3 phương trình của hệ (II) theo vế ta được

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{11}{3}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{11}{6}\)

Trừ phương trình trên cho từng phương trình của hệ (II) theo vế ta lần lượt có \(x=1,y=2,z=3\)

Vậy hệ phương trình có hai nghiệm \(\left(0;0;0\right)\&\left(1;2;3\right)\)

NV
16 tháng 1 2019

ĐKXĐ: \(x,y,z\ge0\)

Từ pt đầu tiên, áp dụng BĐT Cauchy: \(1+y\ge2\sqrt{y}\) \(\Rightarrow\sqrt{x}\left(1+y\right)\ge2\sqrt{xy}\)

\(\Rightarrow2y\ge2\sqrt{xy}\Rightarrow\sqrt{y}\ge\sqrt{x}\Rightarrow y\ge x\)

Tương tự ta có \(2z=\sqrt{y}\left(1+z\right)\ge2\sqrt{yz}\Rightarrow z\ge y\)

\(2x=\sqrt{z}\left(1+x\right)\ge2\sqrt{xz}\Rightarrow x\ge z\)

\(\Rightarrow\left\{{}\begin{matrix}y\ge x\\z\ge y\\x\ge z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

Thay vào pt đầu ta được:

\(\sqrt{x}\left(1+x\right)=2x\Leftrightarrow2x-\sqrt{x}\left(1+x\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1-x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-x+2\sqrt{x}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\-\left(\sqrt{x}-1\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)

Vậy hệ có 2 bộ nghiệm:

\(\left(x,y,z\right)=\left(0,0,0\right);\left(1,1,1\right)\)

Do \(x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right)\Rightarrow x^2=\left(y+z\right)^2\Rightarrow4yz-x^2=4yz-\left(y+z^2\right)=-\left(y-z\right)^2\)

Tương tự \(4zx-y^2=-\left(z-x\right)^2\)

               \(4xy-z^2=-\left(x-y\right)^2\)

Ta lại có: \(yz+2x^2=yz+x^2-x\left(y+z\right)=yz+x^2-xy-xz=\left(x-y\right)\left(x-z\right)\)

Tương tự: \(zx+2y^2=\left(y-x\right)\left(y-z\right)\)

                \(xy+2z^2=\left(y-z\right)\left(y-y\right)\)

\(P=\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y^2\right)}{\left(x-y\right)\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}{-\left(y-z\right)^2\left(z-x\right)^2\left(x-y\right)^2}=1\)

NV
12 tháng 5 2019

Do \(2x^2=y\left(x^2+1\right)\Rightarrow y\ge0\), tương tự ta có \(x;y;z\ge0\)

- Nhận thấy \(x=y=z=0\) là 1 nghiệm

- Nếu \(x;y;z>0\)

\(y\left(x^2+1\right)\ge y.2x=2xy\Rightarrow2x^2\ge2xy\Rightarrow x\ge y\)

Tương tự ta có \(y\ge z;z\ge x\Rightarrow x=y=z\)

Thay vào pt đầu ta có

\(2x^2=x\left(x^2+1\right)\Leftrightarrow x\left(x^2-2x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=y=z=0\\x=y=z=1\end{matrix}\right.\)

NV
5 tháng 5 2020

(1)+(3)-(2) \(\Rightarrow x\left(x+y+z\right)=24\) (4)

\(\left(1\right)+\left(2\right)-\left(3\right)\Rightarrow y\left(x+y+z\right)=48\) (5)

\(\left(2\right)+\left(3\right)-\left(1\right)\Rightarrow z\left(x+y+z\right)=72\) (6)

Cộng vế với vế: \(\Rightarrow\left(x+y+z\right)^2=144\Rightarrow\left[{}\begin{matrix}x+y+z=12\\x+y+z=-12\end{matrix}\right.\)

- Với \(x+y+z=12\) (7) lần lượt chia vế cho vế cho (4); (5); (6) cho (7)

- Với \(x+y+z=-12\) (8) lần lượt chia vế cho vế của (4); (5); (6) cho (8)

5 tháng 5 2020

arigatou :3