3/1.3 +3/3.5+3/5.7+...+3/49.50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1.3}\)+ \(\frac{3}{3.5}\)+ \(\frac{3}{5.7}\)+...+ \(\frac{3}{49.51}\)
= \(\frac{3}{2}\)( \(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+ \(\frac{2}{5.7}\)+...+ \(\frac{2}{49.51}\))
= \(\frac{3}{2}\)( \(\frac{1}{1}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+...+ \(\frac{1}{49}\)- \(\frac{1}{51}\))
= \(\frac{3}{2}\)( 1- \(\frac{1}{51}\))
= \(\frac{3}{2}\). \(\frac{50}{51}\)
= \(\frac{25}{17}\).
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)
Ủng hộ mk nha !!! ^_^
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +....... + 1/97 - 1/99
= 1- 1/99
= 98/99
3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51
= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )
= 3 x ( 1 - 1/51 )
= 3 x 50/51
= 150/151
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
Gấp lắm hả :V
\(A=\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{2001\cdot2003}\)
\(=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2001}-\frac{1}{2003}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2003}\right)=\frac{6006}{4006}\)
3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51
3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)
3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)
3/2(1-1/51)
3/2 . 50/51
25/17
áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu
VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)
nên = 1/1-1/3+1/3+1/5+...+1/49-1/51
=1-1/51
=50/51
Mọi người giúp mình với
\(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{51}\right)\)
\(=\frac{25}{17}\)