cho hình chữ nhật ABCD có chiều dài là 12 cm , chiều rộng 6 cm . Lấy điểm M trên AB sao cho AM = \(\frac{1}{3}\)AB. Lấy điểm N sao cho DN = \(\frac{2}{3}\)DC .
a) Tính diện tích tam giác MDN
b) Kéo dài NM cắt DA kéo dài tại E . So sánh AE và AD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ABCD là hình chữ nhật.
\(\Rightarrow DC=AB=12\left(cm\right).\)
\(S_{\Delta MDN}=\dfrac{1}{2}\times DN\times BC.\\ =\dfrac{1}{2}\times\dfrac{2}{3}DC\times BC.\\ \Rightarrow S_{\Delta MDN}=\dfrac{1}{2}\times\dfrac{2}{3}\times12\times6=24\left(cm^2\right).\)
a) Chiều dài hình chữ nhật ABCD là:
60 : 2 : (3 + 2) x 3 = 18 (cm)
Chiều rộng hình chữ nhật ABCD là
60 : 2 : (3 + 2) x 2 = 12 (cm)
Diện tích hình chữ nhật ABCD là:
18 x 12 = 216 (cm\(^2\))
b) Diện tích tam giác ABE là:
18 x 12 : 2 = 108 (cm\(^2\))
Diện tích tam giác ABM là:
18 x (12 : 3 x 2) : 2 = 72 (cm\(^2\))
Vậy diện tích tam giác MBE là:
108 - 72 = 36 (cm\(^2\))
Diện tích tam giác MCD là:
18 x (12 - 8) : 2 = 36 (cm\(^2\))
Vậy diện tích tam giác MBE bằng diện tích tam giác MC
Còn hình vẽ thì mình không biết vẽ cách nào nữa
đoạn thẳng AM là
12.\(\frac{1}{3}\)=4( cm)
đoạn thẳng DN là
6.\(\frac{2}{3}\)= 4(cm)
hok tốt
đoạn thẳng AM là
12.\(\frac{1}{3}\)=4( cm)
đoạn thẳng DN là
6.\(\frac{2}{3}\)= 4(cm)
hok tốt