K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2015

\(S=\frac{1}{50}+\frac{1}{51}+.....+\frac{1}{99}>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)

10 tháng 6 2016

S = 1 / 50 + 1 / 51 +...+ 1 / 99 > 1 / 99 + 1 / 99 +...+ 1 / 99 = 50 / 99 > 50 / 100 = 1/2

6 tháng 4 2019

\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(có 50 số hạng)\(=\frac{50}{100}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\) .

6 tháng 4 2019

Có: \(\frac{1}{50}>\frac{1}{100}\\ \frac{1}{51}>\frac{1}{100}\\ \frac{1}{52}>\frac{1}{100}\\ .\\ .\\ .\\ \frac{1}{98}>\frac{1}{100}\\ \frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)(có 50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}\cdot50\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\left(đpcm\right)\)

19 tháng 4 2018

Ta có : 

\(\frac{1}{50}>\frac{1}{100}\)

\(\frac{1}{51}>\frac{1}{100}\)

\(\frac{1}{52}>\frac{1}{100}\)

\(............\)

\(\frac{1}{98}>\frac{1}{100}\)

\(\frac{1}{99}>\frac{1}{100}\)

\(\Rightarrow\)\(S=\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)

Do từ \(50\) đến \(99\) có \(99-50+1=50\) số nên có \(50\) phân số \(\frac{1}{100}\)

Suy ra : 

\(S>50.\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

Mình nhầm chứng tỏ tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

Giải:

\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\) 

\(S=\left(\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{74}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{98}+\dfrac{1}{99}\right)\) 

\(\Rightarrow S>\left(\dfrac{1}{50}+\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{75}+...+\dfrac{1}{75}+\dfrac{1}{75}\right)\) 

\(\Rightarrow S>\dfrac{1}{2}+\dfrac{1}{3}>\dfrac{1}{2}\) 

\(\Rightarrow S>\dfrac{1}{2}\left(đpcm\right)\) 

thôi nhầm tiêu đề, xin lỗi bạn!

22 tháng 2 2020

Ta thay S co 50 so hang ma 

\(\frac{1}{50}>\frac{1}{100},\frac{1}{51}>\frac{1}{100},\frac{1}{52}>\frac{1}{100},...,\frac{1}{99}>\frac{1}{100}\)

=> cong tung ve 50 bdt cung chieu ta duoc

\(S>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) (do S co 50 so hang )

Vay S>1/2 dpcm

14 tháng 3 2016

ta có:1/50>1/100

         1/51>1/100

          ...............

          1/99>1/100

=>S>50*1/100

=>S>1/2(đpcm)

14 tháng 3 2016

1/50>1/100

1/51>1/100

...................

1/99>1/100

=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)

=>S>1/2