K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2019

ĐKXĐ:

\(P=\left[\frac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\frac{2}{\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x+y}{xy}\right]:\left[\frac{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}\right]\)

\(=\left(\frac{2\sqrt{xy}+x+y}{xy}\right):\left[\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\right]=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\frac{\sqrt{xy}}{\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

\(xy=16\Rightarrow\left\{{}\begin{matrix}\sqrt{xy}=4\\y=\frac{16}{x}\end{matrix}\right.\)

\(\Rightarrow P=\frac{\sqrt{x}+\frac{4}{\sqrt{x}}}{4}\ge\frac{1}{4}\left(2\sqrt{\sqrt{x}.\frac{4}{\sqrt{x}}}\right)=1\)

\(\Rightarrow P_{min}=1\) khi \(x=y=4\)

29 tháng 7 2017

Thưa....bạn.....mình....chịu.....

16 tháng 8 2017

Ê bạn... thiên vị ak.

Sao ko đợi người nào giỏi trả lời

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v