K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
17 tháng 6 2019

\(gt\Rightarrow\frac{ab+bc+ca}{abc}=0\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\Rightarrow x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-czx\right)+3xyz\)

+ \(A=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)

\(=abc\cdot\frac{3}{abc}=3\)

17 tháng 6 2019

Ta có:

ab + ac + bc = 0

\(\Rightarrow\) \(\frac{ab+ac+bc}{abc}=0\)

\(\Rightarrow\) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt \(\frac{1}{a}=x;\) \(\frac{1}{b}=y;\) \(\frac{1}{c}=z\)

Mà x + y + z = 0

=> x3 + y3 + z3 = 3xyz (Tự chứng minh nhé bạn, nếu không chứng minh được thì bình luận nhé!)

\(\Rightarrow\) \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

Ta có:

\(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)

\(A=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)

\(A=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(A=abc.\frac{3}{abc}\)

\(A=3\)

DD
15 tháng 5 2021

\(ab+bc+ca=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(vì \(a,b,c\ne0\)

Ta có hằng đẳng thức:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

nên \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)

Từ đó suy ra \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(\Leftrightarrow\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=3\)

\(\Leftrightarrow P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=3\)

16 tháng 2 2017

A=\(\frac{a^2}{bc}\)+\(\frac{b^2}{ac}\)+\(\frac{c^2}{ab}\)=\(\frac{a^3}{abc}\)+\(\frac{b^3}{abc}\)+\(\frac{c^3}{abc}\)=\(\frac{a^3+b^3+c^3}{abc}\)

Mà a^3+b^3+c^3=3abc ( Tự chứng minh )

\(\Rightarrow\)A= \(\frac{3abc}{abc}\)= 3

16 tháng 2 2017

jhregguaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

13 tháng 12 2019

Tham khảo: Câu hỏi của Đậu Đình Kiên

28 tháng 9 2016

\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\left(a^3+b^3+c^3\right)\frac{1}{abc}\)

Cm với a+b+c=0 thì \(a^3+b^3+c^3=3abc\)(1) .Từ đó tính dc A, muốn cm(1) bạn xét hiệu nhé

\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(luôn đúng vì a+b+c=0)

29 tháng 9 2016

mình cm như vầy cũng đúng phải không: \(a+b+c=0\Rightarrow a+b=-c\)

                                                            \(\)                      \(\Rightarrow\left(a+b\right)^3=-c^3\)

                                                                                       \(\Rightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

                                                                                       \(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

                                                                                        \(\Rightarrow a^3+b^3+c^3=3abc\)

23 tháng 12 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)     (1)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{ac+bc}{abc}=\frac{ab+ac}{abc}=\frac{ab+bc}{abc}\)

\(\Rightarrow ac+bc=ab+ac=ab+bc\)

\(\Rightarrow ab=ac=bc\) (2)

Từ (1) và (2)

\(\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{3a^2}{3a^2}=1\)

Vậy M = 1

8 tháng 2 2021

Ta có : \(\frac{a^2-bc}{a}+\frac{b^2-ac}{b}+\frac{c^2-ab}{c}=0\)

=> \(a-\frac{bc}{a}+b-\frac{ac}{b}+c-\frac{ab}{c}=0\)

=> \(a+b+c=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\)

=> \(a+b+c=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

=> \(\frac{a+b+c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

=> \(\frac{2}{bc}+\frac{2}{ac}+\frac{2}{ab}=\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{bc}-\frac{2}{ac}-\frac{2}{ac}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{a^2}-\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}-\frac{1}{bc}+\frac{1}{c^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{a}-\frac{1}{c}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{a}-\frac{1}{c}=0\\\frac{1}{b}-\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}\\\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\left(\text{đpcm}\right)\)

4 tháng 3 2019

Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath

Học tốt=)

4 tháng 3 2019

tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2